Open Source Broadcast Encoding
Kieran Kunhya

LSM 2012

kierank@ob-encoder.com

Why Open Source broadcast encoding?

e Almost entirely based on open standards
DVB/ATSC/ETSI/MPEG/SMPTE etc.

» Relatively little communication with other
devices (usually SDI/IP in and ASI/IP out) — so
few (if any) proprietary protocols to use.

e World class encoder(s) available and CPUs now
very powerful

Current marketplace

* Top-end broadcast encoders are FPGA based —
almost homogeneous feature set.

> Sometimes use of CPU to offload parts of
work (e.g. Rate control)

> Modern encoders usually running Linux

* Main features are encoding from SDI or
transcoding from IP/ASI.

Current use of OSS for Broadcast Encoding

* Notable users are Avail-TVN (USA) and Free (France).

e Usually in-house or at least some customisation

> Usually have staff used to working at a relatively low level with
OSS

* No turnkey system for broadcasters less familiar with
OSS to deploy

° Important to maintain realtime and handle things like teletext,
captions etc

X264

* World class MPEG-4/AVC encoder in an number of areas

Used heavily on Web (Youtube/Facebook etc), Blu-Ray (Warner)
and in other areas (e.g. Cloud gaming).

Technical strengths and weaknesses compared to hardware
encoder.

Supports professional features like 10-bit 4:2:2.

 Historical links with Ateme — similar paths taken (never a
formal relationship)

* LPB (and recently Avail-TVN) working on x262, MPEG-2
encoder using x264 toolkit

History of OBE

e LPB and one Norwegian IPTV provider interested in software
broadcast encoding.

e Led to creation of Open Broadcast Encoder

° First tool was VoD creation — useful to test STB support
No further plans with VoD

> Later on went to realtime encoding
e Other broadcasters/operators got involved at different stages

> Frequent communication - loosely could be called an “advisory
board”

Development

Development done on production broadcast chains

> Ubiquitous Blackmagic SDI cards made this quite simple
Tested using analysers on the broadcast chain

> Often streams sent to the home

Speedcontrol in x264 (originally developed by Avail-TVN) to
manage encoder speeds to maintain realtime encoding — adds
latency

T-STD compliant MPEG-TS multiplexing

Features not claimed to be stable unless in production

Goals of project

e Match or beat mainstream broadcast encoder
features/quality on commodity hardware:

e Low-latency contribution (interviews ~200-300ms end
to end) — OBE users exist

e Mid-latency contribution (~Is encoder latency) — No
OBE users exist yet!

» Distribution (1-2s encoder latency) — OBE users exist

Psychological Goals

e Small-to-mid size broadcasters more likely to deploy— fewer
people to convince (almost always no financial incentive like
other areas of OSS).

 Easier to picture for many operators with a “setup encoder
and forget about it” view —“replace hardware encoder with
server”’. Compare this to integration of FFmpeg into
transcoding workflow (bash scripts? metadata? etc.)

e Make current OSS users appreciate at this stage there will be
loss of flexibility

e Users should feel that the encoder will behave like
proprietary counterparts

OBE deployments — Louisiana Public
Broadcasting (LPB)

Statewide PBS network operated by the Louisiana Educational
Television Authority (Very small EBU member sized)

Use the state academic IP network for inter-site feeds and for six
ATSC transmitters with a DVB-52 backup.

Use OBE to distribute coverage of legislature and nightly state
lottery results

Enabled them to divide their satellite space segment and sell
capacity for occasionals

Wide range of receivers, from consumer receivers to most
expensive |IRDs

Future LPB work

* OBE in their OB truck.
e OBE for multiple inter-site feeds.

e MPEG-2 for other uses (inter-broadcaster
feeds)

OBE deployments — Norwegian IPTV

e Encode an HD and SD service of a national
channel.

> Though sent to homes only viewable by engineers for
reasons unrelated to OBE.

> Monitored using Agama probes.

e Demonstrated problems with lack of
frame-synced sources

OBE deployments — USA interviews

e US company uses OBE for low-latency
news interviews

e OBE provides around 300ms end-to-end
latency using P-frame only stream

OBE deployments — Frikanalen

 Community television station in Norway
> Run in part by NRK engineers
e On the national DVB-T network

o Useful introduction to working with DVB-T — worked
closely with the control centre

> Very likely the first permanent DVB-T service
encoded with OSS.

e Uses experimental AS| output

* Frikanalen also uses OSS playout

OBE deployments — Far East

* Broadcaster in the Far East using OBE on
DVB-S2/DVB-T2
> Independently deployed

° Future plans involve a lot more OBE channels
— Watch this space!

Current requirements

e OBE clock is locked to SDI - frame synchronisation
strongly recommended.

> Rare problems with frame drops on unsync’d sources. Cards
don’t provide much information about drops.

> Use frame arrivals as clock ticks and interpolate between ticks

* CPU requirements involve latest Intel CPU for HD

> Haswell CPU next year should provide major speed increase

e Ubuntu 64-bit mandatory — CentOS planned

> CentOS has older components so requires testing

Why not OTT or other web streaming?

OBE must follow market segmentation of encoders. Market is
awash with OTT encoders but small number of world class
television encoders.

Over half of all enquiries about streaming.

> Perception that OSS isn’t good enough for professional
encoding.

> Need to prove to masses that OSS is capable of more than
streaming! Deploy as much as possible.

OTT devices don’t care about hard real-time

> Huge buffers, no respect for MPEG-TS buffering models

Why notVLC, Gstreamer, FFmpeg etc!?

e VLC good for streaming

 Difficult to merge consumer hacks and broadcast
hacks - Work duplication is regrettable

e OBE tries to return as much code where it’s a good
fit to upstreams (e.g. Swscale and v210 assembly).

> Notably a number OBE development machines shared
with FFmpeg/Libav/x264.

Audio

 Historically no good OSS (HE-)AAC encoder

Changing with Google release of Fraunhofer AAC
encoder as part of Android 4.1

e Historically OSS didn’t bother with metadata,
channel reconfiguration

e Channel map changes are not 100% defined

e Cards don’t provide audio control packets

Dependence on SDI/ASI hardware

e OBE is dependent on closed hardware

o ALL usable SDI and ASI cards are buggy or have issues
Current AS| card (DVEO/Linsys) have increasing latency
DVEOQO/Linsys HD-SDI cards have inherent lipsync problem
Closed Blackmagic drivers crash sometimes upon load
No proper access to AES frames
etc...

° Cards requiring NDAs are of course unsuitable

e Open Hardware is very important
> Bugs can be fixed like software.

Example DVEO (Linsys) HD-SDI bug

Splitting out OBE components

* SDI-related code worth splitting into
library for other applications to use.

> How low-level do you go? So few cards with
OSS drivers...

> VANC code is definitely reusable but too
small to form a library.

GPUs

* Lots of people ask about GPU encoding

e GPUs are NOT designed for the serial nature of video
encoding

e x264’s lookahead has been ported to GPU but CPU
lookahead currently beats it

e (Personal opinion) “GPU encoding” is largely a marketing
scam.

« HOWEVER, GPUs could be useful for filtering such as very
high quality deinterlacing algorithms (think Alchemist

quality...)

Patents

e Lots of OSS “commentators” make outlandish claims like GPL can’t
be used with a patent licence.
> Gone are the days of robot-email patent threats - world has moved on.
> Qutlandish claims damage use

* As with proprietary software there are clear limitations and

limitations which are in a grey area. | will talk about what you can
do.

* MPEG-LA have said source code distribution is not a product
which requires royalties. Public statements could be asked for from
them and others.

> Modifying and shipping source keeps you in the clear.

Commercial Model

e There has to be a sustainable commercial
model to pay for R&D

> Days where broadcasters/operators can fund
improvements are coming to an end

* Proprietary management tools
* Support contracts down the line

How can broadcasters get involved!?

e Explain your use-cases for OBE. Be aware that niche
features that affect OBE heavily may not be followed up.

> Equally talk to us before heavily modifying OBE because your
code may not be accepted.

¢ If you'd like to deploy but need to convince higher-ups,
tell us what you need in OBE (technically or
commercially) to make it happen.

o Tell us about UX problems between OBE and others.

Deployments and R&D

o OBE will have a recommended set of
system requirements for current SD and
HD formats.

e Anything else is R&D territory

> 1080p50/60 and 4K have been tested with file

input but would require code changes to
speedcontrol presets.

Future work

e Statmux, through Open Source mux (unlikely to be
used at early state) or bitrate allocator (more
likely).

* Dithering improvements (on the GPU?)

* Lowlatency uses MBAFF, PAFF on its way. (No fully-
working cards available to receive only one field)

> Leading to MBAFF/PAFF adaptivity
- Contribution feed Interoperability

Future work (2)

e Transcoding from ASI/IP — probably needs a new demux

> FFmpeg demux outputs packets in non-standard order amongst
other things and confuses speedcontrol

o Teletext to DVB-Subtitle conversion
e AVC-Intra over TS/MXF — Interoperability nightmare...
* 3D encoding using Multi-view Coding (MVC)!?

o HEVC.x265 being written but not linked to current
x264 — different licence, written in C++...

Closing remarks

* Not trying to make broadcast encoding IT-
centric

* A step on the road to flexible broadcast
encoding!?

e Talk to other users: #obe on Freenode IRC

> Ning is a more modern way — ob-encoder.ning.com

Thank you for listening

