

R 154

PARAMETERS FOR UHD/HDR PROGRAMMES EXCHANGED AS FILES

SOURCE: EBU Video Systems Group

Geneva September 2021

Intended use and area of application

This document recommends formats and parameters for programmes delivered or exchanged as UHD-files between different partners. The document is intended as a ready-to-use guideline where no other bilateral agreements are in place and can therefore be considered as a basic set of recommendations for UHD-HDR non-live content exchange. These recommendations can also be used as a starting point by broadcasters and production companies just beginning in-house UHD-HDR content production or processing, and who need a simple and concise set of parameters and rules that can be used for tender and/or commissioning purposes.

The recommendations reflect well established "best practices" in the industry at publication and are likely to be updated as more efficient formats are established as (de-facto) standards in the industry.

Please note that this publication's application is to everyday UHD material exchange, the delivery of finalized programmes to the broadcaster as well as ingest, basic post-production and playout from broadcast centres. It is not targeted towards distribution to end users nor is it aimed at high-end UHD movie and feature film production.

Parameters for UHD/HDR programmes exchanged as files

EBU Committee	First Issued	Revised	Re-issued
TC	2021		

Keywords: UHD, HDR, HLG, ADM, S-ADM, ADM Profile, XAVC, AES3, NGA, MGA.

Recommendation

The EBU, considering that:

- 1. Digital television image formats for HDTV and UHDTV have been specified by the ITU-R in Recommendations ITU-R BT.709, ITU-R BT.2020 and ITU-R BT.2100.
- 2. Modern displays are capable of reproducing images at a higher luminance, greater contrast ratio and wider colour gamut than is conventionally employed in programme production.
- 3. High dynamic range television (HDR-TV) has been shown to increase viewer enjoyment of television pictures.
- 4. Audio signals in files should be accurately and reliably described.
- 5. EBU R 151 encourages broadcasters to adopt Recommendation ITU-R BS.2076 'Audio Definition Model' (ADM) to describe the metadata of NGA¹ programmes.
- 6. S-ADM is specified in Recommendation ITU-R BS.2125.
- 7. The standardized method to carry S-ADM is specified in SMPTE ST 2116:2019 and uses AES3 with SMPTE ST 337 formatting.
- 8. The EBU ADM Broadcast Production profile is described in EBU Tech 3392.

And recognising that

9. It strongly encourages innovation in personalised sound experiences within the 15 audio channels plus a descriptive metadata (S-ADM) track, providing added value to UHD programmes.

Recommends that,

The formats and parameters listed in Annex A be used for the file exchange of UHD-TV content. Annexes B & C are informative.

¹ SMPTE documents use the term Metadata Guided Audio (MGA)

Annex A: Parameters for UHD File Exchanges (normative)

Video

Video Parameters

Image Container Shape	16:9	
Container Pixel Count	3840 x 2160	
Pixel Aspect Ratio	1:1	
Frame Frequency	25 Hz, 50 Hz or 60/1.001 Hz	
Transfer Function	ITU-R BT.2100 Table 5 (Hybrid Log-Gamma)	
Colour Primaries	ITU-R BT.2100 Table 2	
Colour Matrices	ITU-R BT.2100 Table 6	
Video Format	10-bit 4:2:2 Y'C'BC'R	
Video Range	EBU R 103 Preferred Minimum/Maximum Range	

NOTES FOR CLARIFICATION:

- use of a Standard Dynamic Range (SDR) transfer function is not allowed,
- High Frame Rate (HFR >60 fps) content is NOT recommended at this time for baseline exchange,
- Hybrid Log-Gamma HLG is the recommended transfer function in this document,
- resolutions greater than 3840 x 2160 (e.g., "8k") are not recommended in this document.

Exposure

Programme productions should follow the exposure guidelines suggested in the nominal and primary signal levels tables of ITU-R BT.2408 when creating video for exchange.

Object	Signal Level %
18% Grey Card	38
Greyscale Chart Max (83% reflectance)	71
Greyscale Chart Max (90% reflectance)	73
HDR Reference White / Diffuse White / Graphics White	75
Light Skin Tone	55 - 65
Medium Skin Tone	45 - 60
Dark Skin Tone	25 - 45
Grass	40 - 55

Video Signalling and Metadata

Video shall have signalling to enable equipment to correctly identify video formats and set their operational mode.

Where appropriate and to assist with signal format and conversion identification, the EBU HLG Colour Bars described in EBU Tech 3373 should be used.

Given the current state of UHD/HDR implementation, where an HD SDR version is required, Report ITU-R BT.2408 'Guidance for operational practices in HDR television production' provides guidance on conversion between HDR and SDR.

Graphics elements that have a CICP value indicating that they are ITU-R BT.2100 Table 5 compliant shall be directly overlaid in the Programme video data stream.

Annex B gives Informative guidance on video as it is used for file exchange.

Audio

Audio Parameters

For conventional channel-based formats complying with EBU R 123	min 2, max 16 channels for legacy formats
For Metadata-Guided Audio (MGA)	min 2, max 15 channels plus 1 S-ADM track (full frame mode)
Metadata	ADM in MXF S-ADM in MXF S-ADM in AES3
Sampling Rate	48 kHz
Bit Depth	24 bit
Loudness Normalisation	EBU R 128

Track Allocation

For programmes delivering Metadata-Guided Audio (MGA), one of the following templates should be used:

- The S-ADM & ADM template for production of Personalized Sound Experience (PSE) content with a focus on accessibility and personalisation use-cases, is described in Annex C as "Broadcast Production Template 1". It consists of a 0+5+02 Music & Effects (M&E) bed, at least one language channel, and, if required, an Audio Description channel. Template 1 should be the default template.
- The S-ADM & ADM template for production of immersive audio content is described in Annex C as "Broadcast Production Template 2". It consists of a 4+5+0 M&E bed, at least one language channel and, if required, an Audio Description channel.

In the ADM, track allocation is specified in the <chna> chunk which contains the table of audio track numbers and which ADM channels they correspond to. In S-ADM this information is contained in the <transportTrackFormat> element.

Synchronisation

To avoid audio "phasing" or even cancellation when multi-channel audio is downmixed, timing differences between correlated audio channels must be no more than 0.2 samples (i.e., the timing between each channel of the six audio tracks of a surround sound signal.

Annex C gives Informative guidance on audio as used in file exchange.

Access Services

Subtitles

Subtitle carriage is not mandatory. Where required, subtitles may be supplied as a separate file according to EBU STL (EBU Tech 3264).

Signing

Signing carriage is not mandatory. Where required, the signing shall be delivered as a timecode synchronous separate UHD video file with a monochromatic background to allow overlay.

Glossary

A glossary for UHDTV is available from the EBU web site at https://tech.ebu.ch/uhdtv/glossary.

Annex B: UHD-HDR Video for file exchange (informative)

This Annex is a brief introduction to the requirements for non-live television programme production. For a full discussion on the production of UHD HDR video, ITU-R BT.2390-8 or later may be referenced.

Conversion of non-compliant video for use in Programmes

Video elements in accordance with ITU-R BT.709 or ITU-R BT.2020 can either be directly mapped such that their peak white value is mapped to HDR Reference White (75%) or they can be up-mapped with a highlight expansion which does not significantly affect skin tones.

Video elements in accordance with ITU-R BT.2100 Table 4 (Perceptual Quantization) can be converted in accordance with Reports ITU-R BT.2408 and ITU-R BT.2446

Conversion of graphics for use in Programme

Graphics elements in accordance with ITU-R BT.709 or sRGB can be directly mapped such that their peak white value is mapped to HDR Reference White (75%) in the Programme video data stream.

Exposure Guidelines Note

Exposure guidelines are taken from ITU-R BT.2408 and are important to ensure high quality conversion to standard dynamic range video with static down-mapping. Exposure guidelines may be revised when dynamic down-mapping equipment and HDR production monitors become prevalent.

Annex C: Broadcast Production Audio Templates for UHD File Exchange (informative)

The ADM (Audio Definition Model), specified in Recommendation ITU-R BS.2076 "allows the format and content of audio files to be reliably described". It represents an inherent track allocation table. ADM enables a new set of use-cases: immersive audio, dialogue enhancement, multi-language and audio description support, and movement of audio objects.

The S-ADM (Serial-ADM), specified in Recommendation ITU-R BS.2125 "is designed for use in linear workflows such as live or real-time production for broadcasting and streaming applications". This recommendation describes how the XML ADM is placed into a serial frame-based structure but does not specify the method of carriage. So far there is only one standardized method to carry S-ADM. This is specified in SMPTE ST 2116 and uses AES3 with SMPTE ST 337 formatting.

Mapping Metadata Guided Audio (MGA) signals with S-ADM Metadata into the MXF Constrained Generic Container, S, is a working draft at SMPTE and should be published during 2021.

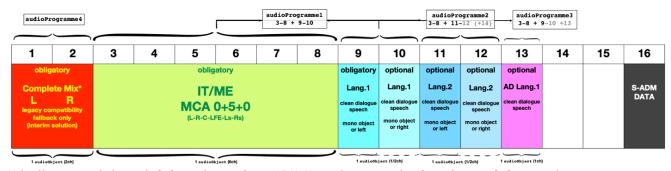
For ADM wrapping and mapping in MXF several proposals have been made by EBU Members. At present (Q2-2021) they are under evaluation. For the purposes of this recommendation, it is currently best practice to apply S-ADM in MXF as previously described².

The first step towards practical use cases for the ADM is to facilitate dialogue enhancement. This is generally achieved by keeping speech (for example, commentary or narration) separate from M&E for all content versions, not just when international clean audio is required. It is recommended to use at least a 5-channel surround M&E bed for UHD-TV.

The Audio Definition Model (ADM) is intentionally very generic, to support a wide variety of different application areas. The EBU "ADM broadcast production profile", specified in EBU Tech 3392, constrains the ADM to simplify implementations and to prevent interoperability problems in the production of Next Generation Audio broadcast programmes.

Figures C1 & C3 show the two specific configurations recommended in the context of this document, which can be accommodated in Level 1 of EBU Tech 3392.

Note: these templates, based on EBU Tech 3392, can be adapted to production needs and deployment scenarios or new ones can be created.


Broadcast Production Template 1: 0+5+0 (aka 5.1) for two languages and one audio description

Based upon EBU Tech 3392 ADM Broadcast Production Profile Level 1:

- 4 audioProgrammes (presentations)
- 5 audioObjects
- 13 trackCount

Note: 16-channels are the minimum standard for audio for UHDTV. The amount and understanding of audioProgrammes depends on the options actually used

² Using this method will enable automated conversion of archived content into file formats specified by the standardisation proposals currently in development

^{*}Ideally created through 2.0 rendering from ADM-Mix. Alternatively, from legacy 2.0 manual mixing

Figure C1: Tracks allocation according to Template 1

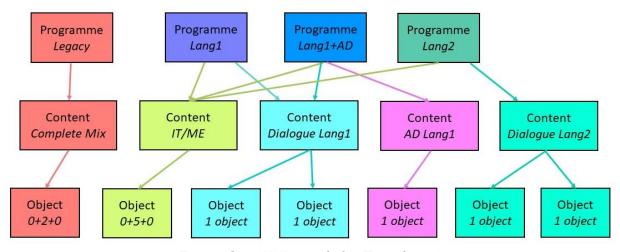
Although there are only 11 channels used in Template 1, the ADM description with three audioProgrammes (ignoring the 2.0 fallback #4) can create up to nine different mixes that could be relayed into current channel-based distribution options:

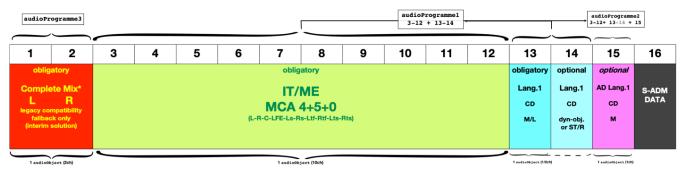
Three formats each with two languages plus one AD:

- · 2.0
- · 5.1
- binaural

In the purely channel-based world, this would add up to a total of 30 channels, and still would not have the capability of feeding an NGA distribution system to provide personalization and interactivity.

The graph of the AXML provides a similarly clear and comprehensive view of its structure.




Figure C2: AXML graph for Template 1

Broadcast Production Template 2: 4+5+0 for one language plus audio description

Based upon EBU Tech 3392 ADM Broadcast Production Profile Level 1:

- 3 audioProgrammes (presentations)
- 4 audioObjects
- 15 trackCount

Note: 16-channel are the minimum standard for audio for UHDTV. The amount and understanding of audioProgrammes depends on the options actually used.

^{*}Ideally created through 2.0 rendering from ADM-Mix. Alternatively, from legacy 2.0 manual mixing

Figure C3: Tracks allocation according to Template 2

The graph of the AXML provide a similar clear and comprehensive view of its structure.

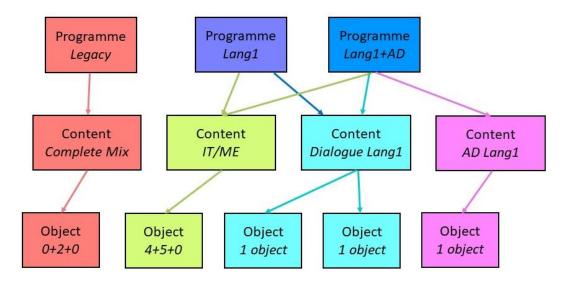


Figure C4: AXML graph for Template 2

Bibliography

ITU-R BT.2390	High dynamic range television for production and international programme exchange	https://www.itu.int/pub/R-REP-BT.2390
ITU-R BT.2408	Guidance for operational practices in HDR television production	https://www.itu.int/pub/R-REP-BT.2408
ITU-R BT.2446	Methods for conversion of high dynamic range content to standard dynamic range content and vice-versa	https://www.itu.int/pub/R-REP-BT.2446
ITU-R BT.709	Parameter values for the HDTV standards for production and international programme exchange	https://www.itu.int/rec/R-REC-BT.709
ITU-R BT.2100	Image parameter values for high dynamic range television for use in production and international programme exchange	https://www.itu.int/rec/R-REC-BT.2100
ITU-T H.273	Coding-independent code points for video signal type identification	https://www.itu.int/rec/T-REC-H.273
SMPTE Registry	Video Payload ID Codes for Serial Digital Interfaces (SMPTE ST 352)	https://smpte-ra.org/video-payload-id-codes-serial-digital-interfaces
SMPTE ST 381-3	Material Exchange Format— Mapping AVC Streams into the MXF Generic Container	https://ieeexplore.ieee.org/document/8058102
SMPTE RDD 32	XAVC MXF Mapping and Operating Points	https://ieeexplore.ieee.org/document/8058105
ITU-R BS.2076	Audio definition model	https://www.itu.int/rec/R-REC-BS.2076
ITU-R BS.2094	Common definitions for the Audio Definition Model	https://www.itu.int/rec/R-REC-BS.2094/en
ITU-R BS.2125	A serial representation of the Audio Definition Model	https://www.itu.int/rec/R-REC-BS.2125/en
ITU-R BS.2088	Long-form file format for the international exchange of audio programme materials with metadata	https://www.itu.int/rec/R-REC-BS.2088/en
ITU-R BS.2127	Audio Definition Model renderer for advanced sound systems	https://www.itu.int/rec/R-REC-BS.2127/en
EBU R 103	Video Signal Tolerance in Digital Television Systems	https://tech.ebu.ch/publications/r103
EBU R 128	Loudness Normalisation and Permitted Maximum Level of Audio Signals	https://tech.ebu.ch/publications/r128
EBU R 151	Recommended Strategy for Adoption of Next-Generation Audio (NGA) Technology	https://tech.ebu.ch/publications/r151

EBU Tech 3285	A format for audio data files	https://tech.ebu.ch/publications/tech3285
	in broadcasting	
EBU Tech 3285-s7	A format for audio data files in broadcasting (Supplement 7 <chna> chunk)</chna>	https://tech.ebu.ch/publications/tech3285s7
EBU Tech 3364	Audio Definition Model	https://tech.ebu.ch/publications/tech3364
EBU Tech 3372	UHD / HDR service parameters	https://tech.ebu.ch/publications/tech3372
EBU Tech 3373	Colour Bars for use in the Production of Hybrid-Log Gamma (HDR) UHDTV	https://tech.ebu.ch/publications/tech3373
EBU Tech 3388	ADM Renderer for use in next generation audio broadcasting	https://tech.ebu.ch/publications/tech3388
EBU Tech 3392	ADM Broadcast Production Profile	https://tech.ebu.ch/publications/tech3392
EBU TR 042	Example of an End-to-End OBA Broadcast Architecture and Workflow	https://tech.ebu.ch/publications/tr042
EBU TR 045	Why broadcasters need an open, codec-independent workflow for NGA production deployment	https://tech.ebu.ch/publications/tr045