
 

 

TECH 3285-s7 

 
SPECIFICATION OF THE BROADCAST 
WAVE FORMAT - A FORMAT FOR 
AUDIO DATA FILES IN BROADCASTING 

 
 
 
Supplement 7: <chna> Chunk 

 
 
 
 
 
 
 
Geneva 
May 2018 



 

This and other pages in the document are deliberately left blank to facilitate two-sided printing. 

 



Tech 3285 (BWF) Suppl. 7 The <chna> Chunk 

3 

 

Contents 

1. Introduction .................................................................................... 5 

2. Terminology .................................................................................... 5 

3. CHNA chunk .................................................................................... 5 

3.1 Definition ................................................................................................................ 5 

3.2 Elements of the ‘chna’ chunk ........................................................................................ 6 

4. Examples ........................................................................................ 7 

4.1 Simple stereo file ....................................................................................................... 8 

4.2 Coded 5.1 with stereo versions ...................................................................................... 8 

4.3 Simple object-based example ........................................................................................ 8 

5. Handling files without a <chna> Chunk ................................................... 9 

6. Bibliography ................................................................................... 10 



The <chna> Chunk Tech 3285 (BWF) Suppl. 7 

4 

 



Tech 3285 (BWF) Suppl. 7 The <chna> Chunk 

5 

 
Specification of the Broadcast Wave Format -  

a format for audio data files 
 

Supplement 7: <chna> Chunk 

EBU Committee First Issued Revised Re-issued 

TC 2015 20181  

 

Keywords: Audio file format, BWF, RF64, BF64, Multichannel Broadcast Wave File, <chna> chunk. 

1. Introduction 

The primary purpose of the <chna> chunk described in this document is to provide the references 
from each track in a BWF [1] or BW64 [2] file to the IDs in the Audio Definition Model (ADM) 
metadata defined in ITU-R BS.2076 [3]. 

Apart from the primary purpose of linking each track in the file with its associated ADM metadata, 
the <chna> chunk also allows faster access to ADM IDs without having to gain access the XML 
metadata (if the IDs are within a range of values defined by the Common Definitions for the ADM in 
ITU-R BS.2094 [5]). As the <chna> chunk can be fixed in size, and is placed before the <data> and 
<axml> chunks, it is easier to access, generate or modify its contents on the fly. 

2. Terminology 

ADM Audio Definition Model – a metadata model for describing the format and content 
of audio files (ITU-R BS.2076 [3]). 

<chna> chunk A chunk containing a set of IDs for each track in the file. These IDs will either 
refer to ADM elements, or be referred to from an ADM element. 

Track A track is a where a sequence of samples (or coded data) is stored in the <data> 
chunk of the BWF file. In multi-track files the samples are interleaved.  

3. CHNA chunk 

3.1 Definition 

The <chna> chunk consists of a header followed by the number of tracks and number of track UIDs 
used. This is followed by an array of ID structures that each contains IDs corresponding to ADM 
element IDs. The ADM IDs within the chunk can either refer to ADM metadata carried in the <axml> 
chunk, or in an external common definition file. If the last four hexadecimal digits of the IDs have a 

                                            

1 References updated. [3] contains a definition of the <chna> chunk that this supplement is completely aligned with. 



The <chna> Chunk Tech 3285 (BWF) Suppl. 7 

6 

value of 0x0FFF and below then they are defined as common definitions in Recommendation 
ITU-R BS.2094-0 – Common Definitions for the Audio Definition Model (for example channel 
definitions for ‘FrontLeft’ and ‘FrontRight’). Any IDs with values of 0x1 000 and above are defined 
as custom definitions and so will be contained in the <axml> chunk within the file. 

The size of the chunk depends upon the number of track UIDs to be defined. The number of ID 
structures must be equal to or greater than the number of track UIDs used. By allowing the number 
of ID structures to exceed the number of UIDs, it can facilitate updating and adding new IDs to the 
chunk without having to change the size of the chunk. 

For example, it may not be clear how many UIDs will be generated at the beginning, so if the 
number of ID structures in the chunk is set to 64 (as this is considered by the implementer to be 
more than enough for their task); the software then generates 55 UIDs (an example number of 
initial UIDs) which fill up the first 55 ID structures, so the remaining 9 ID structures are set to zero 
values. 

The audioID structure contains an index to the track used in the <data> chunk (which contains the 
audio samples), starting with the value of 1 for the first track. It contains a UID for the track, which 
the ADM metadata will contain. 

The audio elements of a track may be differently in the course of a file; in this case, there will be a 
different UID for each definition. Therefore it is possible to have multiple UIDs for each track. The 
other two values in the structure are references to the IDs of the ADM’s audioTrackFormat and 
audioPackFormat elements. 

 

 

typedef struct chna 

{ 

 CHAR ckID[4]; // {'c','h','n','a'} 

 DWORD ckSize; // size of chunk 

 WORD numTracks; // number of tracks used 

 WORD numUIDs; // number of track UIDs used 

 audioID ID[N]; // IDs for each track  (where N >= numUIDs) 

} 

chna_chunk; 
 
typedef struct audioID 

{ 

 WORD trackIndex; // index of track in file 

 CHAR UID[12]; // audioTrackUID value 

 CHAR trackRef[14]; // audioTrackFormatID reference 

 CHAR packRef[11]; // audioPackFormatID reference 

 CHAR pad; // padding byte to ensure even number of bytes 

} 

 



Tech 3285 (BWF) Suppl. 7 The <chna> Chunk 

7 

3.2 Elements of the ‘chna’ chunk 

ckID This is the 4 character array {‘c’,‘h‘,‘n‘,‘a‘}2 for chunk identification. 

ckSize This is the size of the data section of the chunk. (It does not include the 8 
bytes used by ckID and ckSize.) 

numTracks  The number of tracks used in the file. Even if a track contains more than one 
set of IDs, it is still just one track. 

numUIDs The number of UIDs used in the file. As it is possible to give a single track 
multiple UIDs (covering different time periods), this could be a greater value 
than numTracks. This value should match the number of defined IDs in ID. 

ID The structure containing the set of audio reference IDs for the track. This array 
contains N IDs, where N ≥ numUIDs. When numUIDs is less than N the contents 
of the unused track IDs are set to zero. When reading the chunk the value of N 
can be derived from ckSize, as ckSize = 4 + (N * 40), so N = (ckSize - 4) / 40. 

trackIndex The index of the track in the file, starting at 1. This corresponds directly to the 
order of the tracks interlaced in the <data> chunk. 

UID The audioTrackUID value of the track. The character array has the format 
ATU_xxxxxxxx where x is a hexadecimal digit. 

trackRef The audioTrackFormatID reference of the track. The character array has the 
format AT_xxxxxxxx_xx where x is a hexadecimal digit. 

packRef The audioPackFormatID reference of the track. The character array has the 
format AP_xxxxxxxx where x is a hexadecimal digit. When audioPackFormatID 
is not required (when audioStreamFormat is referring to an audioPackFormat 
rather than an audioChannelFormat) this field should be filled with null 
values. 

pad A single byte to ensure the audioID structure has an even number of bytes. 

 

When an ID is not being used the trackIndex should be given the value of zero and the other fields 
should be given null strings that are the same length as the usual ID string used. So the null string 
for packRef would consist of 11 null characters (ASCII value zero) and trackRef would consist of 14 
null characters. 

4. Examples 

To help illustrate the operation of the <chna> chunk some simple examples are given here. 

The pseudo-code in each example uses string-like notation for the IDs (e.g. “AT_00010001_01”), 
whereas in practice an array of characters should be used to ensure correct ordering of the 
characters (so it would actually be done this way:  
{‘A’,’T’,’_’,’0’,’0’,’0’,’1’,’0’,’0’,’0’,’1’,’_’,’0’,’1’}).  

                                            

2 Remark: The definition DWORD ckID = “chna” would not be unique. Different architectures produce different orders of 
the characters. Therefore we define char ckID[4] = {‘c‘,‘h‘,‘n‘,‘a‘} instead. 



The <chna> Chunk Tech 3285 (BWF) Suppl. 7 

8 

4.1 Simple stereo file 

The majority of audio files in existence are still 2-channel stereo files, with the first track 
containing the left channel, and the second track containing the right channel. The ADM has a 
definition of a left channel with an ID of AT_00010001_01, and the right channel with an ID of 
AT_00010002_01. The stereo pack definition has the ID of AP_00010002. 

ckID = {‘c’,’h’,’n’,’a’}; 

ckSize = 84; 

numTracks = 2; 

numUIDs = 2; 

ID[0] = { trackIndex = 1; UID = “ATU_00000001”; trackRef = “AT_00010001_01”; packRef = “AP_00010001”; pad = ‘\0̀ ; }; 

ID[1] = { trackIndex = 2; UID = “ATU_00000002”; trackRef = “AT_00010002_01”; packRef = “AP_00010001”; pad = ‘\0̀ ; }; 

 

The number of ID structures is 2, so there are no unused ID structures in this example. 

4.2 Coded 5.1 with stereo versions 

Non-PCM audio could be stored in the file, an example would be Dolby E carrying a coded version of 
5.1 audio in two tracks. This example shows how 6 tracks contain Dolby E 5.1 with two stereo pairs 
(maybe a stereo mix of the 5.1 and an alternative language version). 

ckID = {‘c’,’h’,’n’,’a’}; 

ckSize = 244; 

numTracks = 6; 

numUIDs = 6; 

ID[0] = { trackIndex = 1; UID = “ATU_00000001”; trackRef = “AT_00020001_01”; packRef = [‘\0’]*11;     pad = ‘\0̀ ; }; 

ID[1] = { trackIndex = 2; UID = “ATU_00000002”; trackRef = “AT_00020001_02”; packRef = [‘\0’]*11;     pad = ‘\0̀ ; }; 

ID[2] = { trackIndex = 3; UID = “ATU_00000003”; trackRef = “AT_00010001_01”; packRef = “AP_00010001”; pad = ‘\0̀ ; }; 

ID[3] = { trackIndex = 4; UID = “ATU_00000004”; trackRef = “AT_00010002_01”; packRef = “AP_00010001”; pad = ‘\0̀ ; }; 

ID[4] = { trackIndex = 5; UID = “ATU_00000005”; trackRef = “AT_00010001_01”; packRef = “AP_00010001”; pad = ‘\0̀ ; }; 

ID[5] = { trackIndex = 6; UID = “ATU_00000006”; trackRef = “AT_00010002_01”; packRef = “AP_00010001”; pad = ‘\0̀ ; }; 

 

The first two tracks (1 & 2) contain the Dolby E data, so the trackRefs contains the IDs 
AT_00020001_01 and AT_00020001_02. The way these audioTrackFormat IDs are designed means 
that these two IDs both reference an audioStreamFormat ID of AS_00040001. This stream (with the 
0004 set of digits) is known to be Dolby E data and contain 5.1 coded channels. No packRef ID is 
required as the pack is known to be 5.1 from the stream reference. 

The next pair of tracks (3 & 4) is the first stereo pair, and the 5 & 6 pair of tracks is the second 
stereo pair. Both pairs have the same trackRef and packRef IDs as they have the same format. 

4.3 Simple object-based example 

Audio objects may only cover a sub-section of time in the audio file. To save space, non-
overlapping objects may share the same track. This is where multiple UIDs in the same track would 
occur. This example also uses more ID structures (32 in this case) than numUIDs to show how 
unused ID structures are set to zero.  

ckID = {‘c’,’h’,’n’,’a’}; 

ckSize = 1284; 

numTracks = 2; 

numUIDs = 4; 

ID[0]={ trackIndex=1; UID=“ATU_00000001”; trackRef=“AT_00031001_01”; packRef=“AP_00031001”; pad=‘\0̀ ; }; 

ID[1]={ trackIndex=1; UID=“ATU_00000002”; trackRef=“AT_00031003_01”; packRef=“AP_00031002”; pad=‘\0̀ ; }; 



Tech 3285 (BWF) Suppl. 7 The <chna> Chunk 

9 

ID[2]={ trackIndex=1; UID=“ATU_00000003”; trackRef=“AT_00031004_01”; packRef=“AP_00031003”; pad=‘\0̀ ; }; 

ID[3]={ trackIndex=2; UID=“ATU_00000004”; trackRef=“AT_00031002_01”; packRef=“AP_00031001”; pad=‘\0̀ ; }; 

ID[4]={ trackIndex=0; UID=[‘\0’]*12;      trackRef=[‘\0’]*14;        packRef=[‘\0’]*11;     pad=‘\0̀ ; }; 

: 

ID[31]={ trackIndex=0; UID=[‘\0’]*12;     trackRef=[‘\0’]*14;        packRef=[‘\0’]*11;     pad=‘\0̀ ; }; 

 

The first track contains 3 UIDs, so will contain 3 different objects (with the track IDs of 
AT_00031001_01, AT_00031003_01 and AT_00031004_01) at different time locations within the file. 
The second track contains one UID, so contains one object. This object has the same pack ID 
(AP_00031001) as the first object in track 1. This suggests the first object contains two channels 
carried in both track 1 and track 2. The ADM metadata carried in the <axml> would be used to 
clarify the allocation of channels and tracks. 

5. Handling files without a <chna> Chunk 

Any files that are generated without the <chna> chunk (including all files that pre-date this 
document) should be handled pragmatically, particularly if a <chna> chunk is to be automatically 
generated for the file. Assuming that no other knowledge of the track allocation in a WAV/BWF file 
exists, then a default set of IDs for the <chna> can be assigned when generating the chunk. 

The number of tracks in a file will be known. The assumption made will be that the file contains 
PCM audio in a channel-based format. The order of the tracks will simply be the track IDs taken in 
numerical order from 00010001_01 (the first four digits represent the type of track, and so they 
don’t change; nor does the two digit suffix). As we don’t know the pack to which the channels are 
assigned to, this is left null. These ID digits are hexadecimal numbers. 

So for a 6 track file the automatically generated chunk will be: 

ckID = {‘c’,’h’,’n’,’a’}; 

ckSize = 244; 

numTracks = 6; 

numUIDs = 6; 

ID[0] = { trackIndex = 1; UID = “ATU_00000001”; trackRef = “AT_00010001_01”; packRef = [‘\0’]*11; pad = ‘\0̀ ; }; 

ID[1] = { trackIndex = 2; UID = “ATU_00000002”; trackRef = “AT_00010002_01”; packRef = [‘\0’]*11; pad = ‘\0̀ ; }; 

ID[2] = { trackIndex = 3; UID = “ATU_00000003”; trackRef = “AT_00010003_01”; packRef = [‘\0’]*11; pad = ‘\0̀ ; }; 

ID[3] = { trackIndex = 4; UID = “ATU_00000004”; trackRef = “AT_00010004_01”; packRef = [‘\0’]*11; pad = ‘\0̀ ; }; 

ID[4] = { trackIndex = 5; UID = “ATU_00000005”; trackRef = “AT_00010005_01”; packRef = [‘\0’]*11; pad = ‘\0̀ ; }; 

ID[5] = { trackIndex = 6; UID = “ATU_00000006”; trackRef = “AT_00010006_01”; packRef = [‘\0’]*11; pad = ‘\0̀ ; }; 

 

If a WAV/BWF file that is being read doesn’t contain a <chna> chunk, then we use the sequential 
IDs for the tracks as shown above. Therefore track 1 will have the definition for AT_00010001_01 
(FrontLeft, PCM). 

This default order of IDs allows backwards compatibility with the WAVEFORMATEXTENSIBLE3 
channel definitions. If the standard definitions for AT_00010001_01 to AT_0001012_01 (there are 18 
channels defined in WAVEFORMATEXTENSIBLE) match those of the WAVEFORMATEXTENSIBLE 
specification, then this compatibility can be ensured. 

While no pack information is used, it could be possible for the user/tools to make assumptions on 
the pack used from the number of the tracks in the file. For example, if it is a 6 track file, the 
audio pack ID for the 5.1 format could be used (e.g. AP_00010003). 

                                            

3 https://msdn.microsoft.com/en-us/library/windows/desktop/dd757714%28v=vs.85%29.aspx  

https://msdn.microsoft.com/en-us/library/windows/desktop/dd757714%28v=vs.85%29.aspx


The <chna> Chunk Tech 3285 (BWF) Suppl. 7 

10 

6. Bibliography 

[1] EBU Tech 3285: Specification of the Broadcast Wave Format – A format for audio files in 
broadcasting. 

[2] ITU-R BS.2088-0 (2015): Long Form File Format for the International Exchange of Audio 
Programme Materials With Metadata 

[3] ITU-R BS.2076-1 (2017): Audio Definition Model 

[4] EBU Tech 3293: EBU Core Metadata Set 

 


