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Foreword 

It has become apparent that the development of a standardised renderer is very important for the 

health of NGA systems. It is crucial for the content production, quality evaluation and verification 

of systems developed within the framework for NGA broadcast systems. 

This document and the associated reference implementation define an audio renderer, designed by 

the EBU members, to interpret the ITU-R BS.2076 ADM metadata directly, rather than by conversion 

to other metadata sets used by commercial systems. 

The EBU believes that providing an open reference renderer for ADM metadata interpretation 

during audio evaluation, production, and monitoring, will be beneficial to the health of the Next 

Generation Audio ecosystem as a whole. 

Another aim is to provide a renderer specification and implementation without ambiguities, to 

ensure reliable and interoperable implementations of tools used throughout the NGA workflow. 
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1. Introduction 

This document describes the EBU ADM Renderer (EAR) - an audio renderer providing a complete 

interpretation of the Audio Definition Model (ADM) metadata, specified in [BS.2076]. Usage of ADM 

metadata is recommended to describe audio formats used in programme production for Next-

Generation Audio (NGA) systems, also known as Advanced Sound Systems. The EBU ADM Renderer 

is capable of rendering audio signals to all reproduction systems specified in [BS.2051] (“Advanced 

sound system for programme production”). 

This specification is accompanied by an open source reference implementation, written in Python 

for file-based ADM processing, available at https://github.com/ebu/ebu_adm_renderer. This 

specification document is a description of the reference code. 

1.1 Abbreviations and Definitions 

This section provides explanations and definitions for certain terms that are used throughout the 

document. 

1.1.1 Abbreviations 

ADM Audio Definition Model 

BMF Broadcast Metadata Exchange Format 

BW64 Broadcast Wave 64 Format 

BWF Broadcast Wave Format 

EAR EBU ADM Renderer 

HOA Higher-order Ambisonics 

IMF Interoperable Master Format 

MXF Material Exchange Format 

NGA Next Generation Audio 

PSP Point Source Panner 

VBAP Vector Base Amplitude Panning 

XML Extensible Markup Language 

https://github.com/ebu/ebu_adm_renderer
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1.1.2 Next Generation Audio 

The multimedia world is moving towards a more involving experience for the audience, with 

enhanced interactivity and immersion. NGA systems aim to provide such enhancements to the 

listening experience. Immersive audio (also called 3D or spatial audio) implies that sound can 

appear to come from any direction around the listener, including above and below. To achieve this, 

NGA systems must support an increased range of reproduction systems (loudspeaker layouts), and 

so be capable of adapting input signals to the output system. Interactivity can, for example, 

include the ability for listeners to adjust dialogue levels, change the positions of sounds, or select 

different languages according to their needs or preferences. 

To achieve immersive audio, there are three fundamental approaches in NGA systems: channel-

based, scene-based and object-based. With channel-based audio, each channel relates directly to a 

loudspeaker in a particular location (examples are stereo, 5.1 and 22.2). Scene-based audio 

represents sound by a combination of dimensional components that combine to make a soundfield, 

with Ambisonics (and Higher Order Ambisonics - HOA) being the primary technique used to effect 

this. With scene-based audio the soundfield has to be decoded to a chosen speaker layout or to a 

binaural signal for use with headphones. Object-based audio represents the sound scene as 

separate elements (e.g. singer, drums), and adds metadata, e.g. position information, to them, so 

they can be rendered to be played out from the correct location. Each approach has pros and cons 

and it is likely that all three will be used to represent programmes, maybe separately, but also they 

might also be used in combination. 

Interactivity can be achieved by using object-based audio. In sending audio objects separately to 

the end-user, they can easily control how those objects are rendered. Both channel- and scene-

based soundfields can be represented as audio objects, it can be considered that all audio can be 

treated as object-based. 

1.1.3 The Audio Definition Model 

The ADM [BS.2076] is a general audio format description model, based on XML (but it could be 

extended to other languages). One of its first applications is an extension to the Broadcast Wave 64 

Format (BW64) [BS.2088] file which includes an <axml> chunk to allow the carriage of XML 

metadata. As the ADM metadata describing the audio format is given in XML, it can readily be 

inserted into the BW64 file. The ADM provides the necessary metadata for object-based, scene-

based and channel-based audio. Moreover, binaural signals can be represented in ADM and the 

Matrix type allows the description of parameters for encoding or decoding matrixed audio signals, 

to be used along with channel-based content, such as mid-side and Lt/Rt representations. 

The ADM is designed to describe audio formats as completely as possible. It is not intended to give 

instructions on how the audio is rendered. For example, a stereo file contains two channels 

intended for speakers positioned at      and      azimuth. The ADM metadata can describe this 

explicitly. What it does not do is to specify how to reproduce these signals in a given reproduction 

system, such as a standard stereo speaker arrangement, headphones, or a wave field synthesis 

speaker array. This is the role of the renderer, given the description of the audio input format and 

the target reproduction system. The ADM metadata should provide enough information for a 

renderer to fulfil its requirements. 

To summarise, the ADM is designed to allow any audio format to be fully specified so it can be 

processed or rendered correctly. 
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1.1.4 Renderer 

A critically important element of a NGA system is a renderer. A renderer turns input audio signals 

with accompanying format metadata into output audio signals for a specific reproduction setup 

(e.g. a stereo loudspeaker pair). A renderer is required to enable reproduction of the above object-

based and scene-based (HOA) audio format types, as well as the conversion of a channel-based 

format from one loudspeaker layout to others. It is similar to a decoder which turns encoded audio 

into listenable audio, and is after, or integrated into, the decoding process in NGA codec systems. 

A renderer needs to be used at all points where one wants to listen to the content (e.g. production, 

monitoring, quality control, archive, consumer devices). 

1.2 The EBU ADM Renderer (EAR) 

1.2.1 Scope of the EBU ADM Renderer 

The initial release of the renderer provides specifications and implementations for all three NGA 

technologies (object-based, scene-based and channel-based). In terms of ADM metadata, this 

means the following ADM typeDefinitions are supported: 

• Objects 

• DirectSpeakers 

• HOA 

 

All sub-elements and parameters of these typeDefinitions are supported by the ADM Renderer 

unless otherwise explicitly stated. 

Specifications and implementations for the other typeDefinitions ‘Matrix’ and ‘Binaural’ will be 

published in the next major release of the EBU ADM Renderer. 

1.2.2 Intended use cases for the EBU ADM Renderer 

The use cases for this renderer are: 

• Production of NGA programmes 

• Archiving of NGA programmes 

• Verification of ADM metadata 

• Subjective evaluations 

• Conversion of metadata from different NGA systems to ADM metadata 

1.2.2.1 Production of NGA programmes 

The EAR can be used for authoring and monitoring of NGA programmes during the entire production 

process. It allows the sound engineer to make use of all ADM parameters for channel-based, scene-

based and object-based NGA technologies. By providing an open and well-defined specification and 

reference implementation, reliability and interoperability can be achieved in production tools. 

1.2.2.2 Archiving of NGA programmes 

The EAR is suitable for archiving NGA programmes. By providing an open and well-defined 

specification and reference implementation, with strict version controls, the correct interpretation 

of ADM metadata in archived programme files can be ensured long-term. 

It could be used to provide a reliable interpretation for any media format which can carry the ADM 

metadata. Besides BW64 for audio-only content, there are currently multiple options available for 
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archival of audio-with-video content (MXF, IMF or BMF). 

1.2.2.3 Verification of ADM metadata 

The EAR directly and explicitly interprets the ADM metadata parameters. It can therefore be used 

to read, parse, and render audio signals with ADM format metadata for the purpose of verifying the 

metadata. 

1.2.2.4 Subjective evaluations 

Being developed by EBU members, without commercial interest, the EAR may be used in subjective 

evaluations. It may serve as a benchmark or anchor renderer during the perceptual evaluation of 

other NGA systems, for example. 

1.2.2.5 Conversion of metadata from different NGA systems to ADM metadata 

Multiple NGA renderers are available; often they are associated with vendor-specific NGA codec 

systems. It is likely different renderers will be used in the production process of different 

broadcasters. Other renderers may only support a limited subset of ADM parameters or may convert 

the incoming and outgoing ADM metadata to internal metadata sets. It is currently not clear what 

the differences between these alternatives are and how conversion should appropriately be 

applied, but it is crucial for a horizontal market to be able to convert between these alternatives 

without changing the perceived impression of the programme. 

For the conversion of NGA content produced with different renderers or to be distributed with 

different NGA codecs, the EAR may be used as a neutral instance. 

2. Conventions 

2.1 Notations 

In this document the following conventions will be used: 

• Text in italic refers to ADM elements, sub-elements, parameters or attributes of [BS.2076]: 

audioObject 

• Monospaced text refers to source code (variables, functions, classes) of the reference 

implementation: core.point_source.PointSourcePanner. It should be noted that for 

readability reasons the prefix ear. is omitted. 

• Upper case bold is used for matrices:   

• Lower case bold is used for vectors:   

• Subscripts in the form    denotes the n-th element of a vector   

• Sections of monospaced text with colour highlighting are used to describe data structures: 

struct PolarPosition : Position { 
  float azimuth, elevation, distance = 1; 
}; 
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2.2 Coordinate System 

Both Cartesian and polar coordinates are used throughout this document. 

 

Figure 1: Coordinate System 

The polar coordinates are specified in accordance with [BS.2076] as follows: 

• Azimuth, denoted by  , is the angle in the horizontal plane, with 0 degrees in front and 

positive angles counter-clockwise. 

• Elevation, denoted by  , is the angle above the horizontal plane, with 0 degrees in front and 

positive angles going up. 

The Cartesian coordinates are specified in accordance with [BS.2076] as follows: 

• The positive Y-Axis is pointing to the front 

• The positive X-Axis is pointing to the right 

• The positive Z-Axis is pointing to the top 

 

The HOA decoder specified in § 9 uses the HOA coordinate system and notation as specified in 

[BS.2076], where: 

• Elevation, denoted by   is the angle in radians from the positive Z-Axis. 

• Azimuth, denoted by  , is the angle in the horizontal plane in radians, with 0 in front and 

positive angles counter-clockwise. 
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3. Structure 

 

Figure 2: Overall architecture overview 

The overall architecture consists of several core components and processing steps, which are 

described in the following chapters of this document. 

• The transformation of ADM data to a set of renderable items is described in § 5 

• The rendering itself is split into subcomponents based on the type (typeDefinition) of the 

item: 

◦ Rendering of object-based content is described in § 7 

◦ Rendering of direct speaker signals is described in § 8 

◦ HOA Rendering is described in § 9 

◦ Shared parts for all components are described in § 6 

4. ADM-XML Interface 

ADM is a generic metadata model which can be represented naturally as an XML document. The 

following subsections describe how the ADM is mapped to internal data structures. These are used 

in the course of this document and are in line with the data structures used by the reference 

implementation. 

It should be noted that despite XML being the typical and common form to represent ADM 

metadata, EAR is not limited to this representation. 

The mapping between the ADM and the internal data structures follows a set of simple rules, which 

are described below. As with all rules, there are some exceptions; these are described in the 

following subsections. 

All the main ADM elements are represented as a subclass derived from ADMElement 
which has the signature: 

  class ADMElement { 
  string id; 
  ADM adm_parent; 
  bool is_common_definition; 
}; 

• Each ADM element class is extended with all the ADM attributes and sub-elements, which are 

mapped to class attributes. 
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• If a sub-element contains more than one value it is in itself a class. E.g. the jumpPosition 

sub-element is a class with the signature: 

  class JumpPosition { 
  bool flag; 
  float interpolationLength; 
}; 

• During the parsing of the XML, references to other ADM elements are stored as plain IDs using 

the sub-element name as attribute name (e.g. AudioObject.audioPackFormatIDRef). To 

simplify the later on access, these references are then resolved in a following step, where 

resolved elements are added to each data structure directly 

(AudioObject.audioPackFormats). 

 

Following these rules the full signature of the AudioContent element looks like this: 

class AudioContent : ADMElement { 
  string audioContentName; 
  string audioContentLanguage; 
  LoudnessMetaData loudnessMetadata; 
  int dialogue; 
  vector<AudioObject*> audioObjects; 
  vector<string> audioObjectIDRef; 
}; 

The main ADM elements and its dedicated classes are implemented in  

fileio.adm.elements.main_elements. The reference resolving is implemented in each class (in 

ADM and each main ADM element) as the lazy_lookup_references method. 

The parsing and writing of the ADM is implemented in fileio.adm.xml. 

4.1 AudioBlockFormat 

audioBlockFormat differs from other ADM elements as its sub-elements and attributes are different 

depending on the typeDefiniton. To reflect this, the AudioBlockFormat is split into multiple 

classes, one for each supported typeDefinition: AudioBlockFormatObjects, 

AudioBlockFormatDirectSpeakers and AudioBlockFormatHoa. 

These are implemented in fileio.adm.elements.block_formats. 

4.2 Position sub-elements 

Positions may be represented by multiple position sub-elements in the ADM. To simplify the 

internal handling, the values of these sub-elements are combined into a single attribute within the 

AudioBlockFormat representation. 

For typeDefinition==Objects this is either ObjectPolarPosition or ObjectCartesianPosition, 

depending on the coordinate system used. For typeDefinition==DirectSpeakers this is 

DirectSpeakerPolarPosition or DirectSpeakerCartesianPosition. 
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4.3 TypeDefinition 

The typeDefinition and typeLabel attributes describe one single property. For that reason, 

internally only a single entity is used to represent them. 

enum TypeDefinition { 
  DirectSpeakers = 1; 
  Matrix = 2; 
  Objects = 3; 
  HOA = 4; 
  Binaural = 5; 
}; 

enum FormatDefinition { 
  PCM = 1; 
}; 

5. Rendering Items 

A RenderingItem is a representation of an ADM item to be rendered – holding all the information 

necessary to do so. An item can thereby be a single audioChannelFormat or a group of 

audioChannelFormats. As each typeDefinition has different requirements it is necessary to have 

different metadata structures for each typeDefinition to adapt to its specific needs. 

The following section describes the used metadata structures in more detail. 

5.1 Metadata Structures 

The RenderingItems are built upon the following base classes: 

• TypeMetadata to hold all the metadata needed to render the item, 

• ImportanceData to hold the effective importance values for this item, 

• MetadataSource to iterate over the TypeMetadata and 

• RenderingItem to combine them and hold the track_indices corresponding to the channels 

within the accompanying audio data. 

 

As each typeDefinition has different requirements TypeMetadata and RenderingItem have to be 

subclassed for each typeDefinition to adapt to its specific needs. MetadataSource is 

typeDefinition independent. Common data is consolidated in ExtraData. 

struct ExtraData { 
  optional<duration> object_start; 
  optional<duration> object_duration; 
  ReferenceScreen reference_screen; 
  Frequency channel_frequency; 
}; 

struct ImportanceData { 
  optional<int> audio_object; 
  optional<int> audio_pack_format; 
}; 

This is implemented in core.utils.metadata_input. The following subsections describe the 

specific implementations for each typeDefinition in more detail. 
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5.1.1 DirectSpeakers 

For typeDefinition==DirectSpeakers the TypeMetadata just holds an audioBlockFormat plus the 

common data collected in ExtraData. 

struct DirectSpeakersTypeMetadata { 
  AudioBlockFormatDirectSpeakers block_format; 
  ExtraData extra_data; 
}; 

As each audioChannelFormat with typeDefinition==DirectSpeakers can be processed independently, 

the RenderingItem contains only a single track_index. 

struct DirectSpeakersRenderingItem(RenderingItem):{ 
  int track_index; 
  MetadataSource metadata_source; 
  ImportanceData importance; 
}; 

5.1.2 Matrix 

As the typeDefinition==Matrix is not supported yet, there are no MatrixTypeMetadata and 

MatrixRenderingItem classes. 

5.1.3 Objects 

The ObjectTypeMetadata just holds an audioBlockFormat plus the common data collected in 

ExtraData. 

struct ObjectTypeMetadata { 
  AudioBlockFormatObjects block_format; 
  ExtraData extra_data; 
}; 

As each audioChannelFormat with typeDefinition==Objects can be processed independently, the 

RenderingItem also contains only a single track_index. 

struct ObjectRenderingItem { 
  int track_index; 
  MetadataSource metadata_source; 
  ImportanceData importance; 
}; 

5.1.4 HOA 

For typeDefinition==HOA the situation is different from typeDefinition==DirectSpeakers and 

typeDefinition==Objects, because a pack of audioChannelFormats has to be processed together. 

That is why the HOATypeMetadata does not contain an audioBlockFormat plus ExtraData, but the 

necessary information is extracted from the audioBlockFormats and directly stored in the 

HOATypeMetadata. 

class HOATypeMetadata { 
  vector<int> orders; 
  vector<int> degrees; 
  optional<string> normalization; 
  optional<float> nfcRefDist; 
  bool screenRef; 
  ExtraData extra_data; 
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  optional<duration> rtime; 
  optional<duration> duration; 
}; 

For the same reason the situation for the HOARenderingItem is different. Here the 

HOARenderingItem not only contains one track_index, but rather a vector of track_indices. 

class HOARenderingItem { 
  vector<int> track_indices; 
  MetadataSource metadata_source; 
  ImportanceData importance; 
}; 

5.1.5 Binaural 

As the typeDefinition==Binaural is not supported yet, there are no BinauralTypeMetadata and 

BinauralRenderingItem classes. 

5.2 Determination of Rendering Items 

To determine the RenderingItems, the ADM structure has to be analysed. Figure 3 shows the 

necessary process path. The starting point is usually an audioProgramme. If the file contains 

multiple audioProgrammes the one with the lowest ID will be used by default. Alternatively the 

audioProgramme can be selected manually by its audioProgrammeID. If no audioProgramme is 

present the collection of all audioObjects, which are not referenced by another audioObject, will 

be the origin. 

Crosschecking between the audioPackFormats referenced by each audioObject and its referenced 

audioTrackUID is performed to verify the consistency. Nested audioObjects are supported without a 

nesting limit, while reference loops are detected. As references from audioTrackFormats back to 

the audioStreamFormat are optional, the mapping from an audioTrackFormat to the 

audioStreamFormat is done reversely from the audioStreamFormat. 

This is implemented in fileio.utils.RenderingItemHandler. 

 

 

Figure 3: Path through ADM structure to determine the RenderingItems 
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5.3 Importance emulation 

The importance parameters as defined by [BS.2076] allow a renderer to discard items below a 

certain level of importance for as yet undetermined, application specific reasons. 

The ADM specifies three different importance parameters that can be used: 

• importance as an audioObject attribute 

• importance as an audioPackFormat attribute 

• importance as an audioBlockFormat attribute for typeDefinition==Object 

 

The most important difference between those importance attributes is that audioBlockFormat 

importance is time-depended, i.e. it may vary over time, while the importance of audioObject and 

audioPackFormat is static. 

A separate threshold can be used for each importance attribute. The determination of desired 

threshold values is considered as highly application and use case specific and therefore out of scope 

of a production renderer specification. Instead EAR provides means to simulate the effect of 

applying a given importance threshold to the ADM. This enables content producers to investigate 

the effects of using importance values on the rendering. Therefore, the importance emulation is 

not part of the actual rendering process, but applied as a post processing step to the 

RenderingItems. 

5.3.1 Importance values of RenderingItems 

Each rendering item might have its own set of effective importance values, because audioObjects 

and audioPackFormats may be nested. Thus, for each RenderingItem all referencing audioObjects 

and audioPackFormats involved in the determination of this RenderingItem are taken into 

account. 

The following rules are applied: 

• If an audioObject has an importance value below the threshold, all referenced audioObjects 

shall be discarded as well. To achieve this, the lowest importance value of all audioObjects 

that lead to an RenderingItem will be used as the audioObject importance for this 

RenderingItem. 

• If an audioPackFormat has an importance value below the threshold, all referenced 

audioPackFormats shall be discarded as well. To achieve this, the lowest importance value of 

all audioPackFormats that lead to an RenderingItem will be used as the audioPackFormat 

importance for this RenderingItem. 

• An audioObject without importance value will not be taken into account when determining 

the importance of an RenderingItem. 

• An audioPackFormat without importance value will not be taken into account when 

determining the importance of an RenderingItem 

 

This is implemented in fileio.utils.RenderingItemHandler. 

5.3.2 Static importance handling 

Given a RenderingItem with ImportanceData , the item will be removed from the list of items to 

render if either the static importance value (audioObject, audioPackFormat) is below the 

respective user-defined threshold: 
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This is implemented in core.importance.filter_audioObject_by_importance and  

core.importance.filter_audioPackFormat_by_importance. 

5.3.3 Time-varying importance handling 

Importance handling on audioBlockFormat (typeDefinition==Object) level cannot be done by 

filtering RenderingItems, as this item might be below the threshold only for some time. To 

emulate discaring of rendering items in that particular case, the RenderingItem shall be 

effectively muted for the duration of the audioBlockFormat. In this context, “muting an 

audioBlockFormat” is equivalent to assuming bf.gain equal to zero for an audioBlockFormat bf. 

This is implemented in core.importance.MetadataSourceImportanceFilter. 

6. Shared Renderer Components 

This section contains descriptions of components that are shared between the sub-renderers for the 

different typeDefinitions. 

6.1 Point Source Panner 

The point source panner component is the core of the renderer; given information about the 

loudspeaker layout, and a 3D direction, it produces one gain per loudspeaker which, when applied 

to a mono waveform and reproduced over loudspeakers, should cause the listener to perceive a 

sound emanating from the desired direction. 

The point source panner is used throughout the renderer — it is used to render point sources 

specified by object metadata, as well as part of the extent rendering system, as a fall-back for the 

direct speakers renderer, and as part of the HOA decoder design process. 

The point source panner in this renderer is based on the VBAP formulation [Pulkki1997], with 

several enhancements which make it more suitable for use in broadcast environments: 

• In addition to the triplets of loudspeakers as in VBAP, the point source panner supports 

atomic quadrilaterals of loudspeakers. This solves the same problems as the use of virtual 

loudspeakers in other systems, but results in a smoother overall panning function. 

• Triangulation of the loudspeaker layout is performed on the nominal loudspeaker positions 

and warped to match the real loudspeaker positions, which ensures that the panning 

behaviour is always consistent within adaptations of a given layout. 

• Virtual loudspeakers and downmixing are used to modify the rendering in some situations in 

order to correct for observed perceptual effects and produce desirable behaviours in sparse 

layouts. 

• To avoid complicating the design to cater for extremely restricted loudspeaker layouts, 0+2+0 

is handled as a special case. 
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6.1.1 Architecture 

The point source panner holds a list of objects with the RegionHandler interface; each region 

object is responsible for producing loudspeaker gains over a given spatial extent. 

In order to produce gains for a given direction, the point source panner queries each region in turn, 

which will either return a gain vector if it can handle that direction, or a null result if it can’t; the 

gain vector from the first region found that can handle the direction is used. 

In any valid point source panner, the following two conditions hold: 

• At least one region is able to handle any given direction. 

• All regions which are able to handle a given direction result in similar gains (within some 

tolerance). 

• Within any region, the produced gains are smooth with respect to the desired direction. 

 

These properties together ensure that gains produced by a point source panner are well defined for 

all directions, and are always smooth with respect to the direction, within some tolerance. 

The available RegionHandler types, and the configuration process used to generate the list of 

regions for a given layout are described in the next sections. 

This behaviour is implemented in core.point_source.PointSourcePanner. 

Additionally, a PointSourcePannerDownmix class is implemented with the same interface. When 

queried with a position, it calls another PointSourcePanner to obtain a gain vector, to which it 

applies a downmix matrix and power normalisation. This is used in § 6.1.3.1 to remap virtual 

loudspeakers. 

6.1.2 Region Types 

Most regions produce gains for a subset of the output channels; the mapping from this subset of 

channels to the full vector of channels is implemented in  

core.point_source.RegionHandler.handle_remap. 

6.1.2.1 Triplet 

This represents a spherical triangular region formed by three loudspeakers, implementing basic 

VBAP. 

This region is initialised with the 3D positions of three loudspeakers: 

              

The three output gains   for a given direction   are such that: 

•        for some    , within a small tolerance. 

•                  

•        

 

This RegionHandler type is implemented in core.point_source.Triplet. 
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6.1.2.2 VirtualNgon 

This represents a region formed by   real loudspeakers, which is split into triangles with the 

addition of a single virtual loudspeaker. Each triangle is made from two adjacent real loudspeakers 

and the virtual loudspeaker, which is downmixed to the real loudspeakers by the provided downmix 

coefficients. 

For example, if four real loudspeaker positions               and one virtual loudspeaker position 

   are used, the following triangles would be created: 

•            

•            

•            

•            

 

When this RegionHandler type is queried with a position, each triangle is tried in turn until one 

returns valid gains, in the same way as the top level point source panner. This produces a vector of 

  gains for the real loudspeakers,            , and the gain for the virtual speaker   , which is 

downmixed to the real loudspeakers by the provided downmix coefficients     : 

             

Finally, this is power normalised, resulting in the final gains: 

   
  

     
 

This RegionHandler type is implemented in core.point_source.VirtualNgon. 

6.1.2.3 QuadRegion 

This represents a spherical quadrilateral region formed by 4 loudspeakers. 

The gains are calculated for each loudspeaker by first splitting the position into two components,   

and  .   could be considered as the horizontal position within the quadrilateral, being 0 at the left 

edge and 1 at the right edge, and   the vertical position, being 0 at the bottom edge and 1 at the 

top edge. 

The   and   values are trivially mapped to a gain for each loudspeaker using equations 1 and 2. The 

  and   value (and therefore the loudspeaker gains) that result in a given velocity vector can be 

determined by solving equations 1 - 3. 

The solution to this problem is of similar complexity to VBAP, and results in the same gain as VBAP 

at the edges of the quadrilateral, making it possible to use with other RegionHandler types in a 

single point source panner under the rules in § 6.1.1. 

The resulting gains are infinitely differentiable with respect to the position within the region, 

producing results comparable to pair-wise panning between virtual loudspeakers in common 

situations. 

This RegionHandler type is implemented in core.point_source.QuadRegion. 
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Formulation 

Given the Cartesian position of 4 loudspeakers,                 in anticlockwise order from the 

perspective of the listener, the gain vector   is computed as for a source direction   as: 

                                      

  
  

     
      

Where   and   are chosen such that the velocity vector     has the desired direction  . The 

magnitude of the velocity vector   is irrelevant, as the gains are power normalised: 

            

for some    . 

Solution 

Given an   value, all velocity vectors   with this   value are on a plane formed by the origin of the 

coordinate system and two points some distance along the top and bottom of the quadrilateral: 

            

            

Therefore: 

                                       

This equation can be solved to find   for a given source direction  . 

Collect the   terms: 

                                  

Expand the cross product and collect the terms: 

        

                              

                     

     

 

Finally, multiply through  : 

           
                                  

                         

  

 

The solution for   is therefore the root of a polynomial, which can be solved using standard 

methods. 

By replacing   by    in the above equations,   can be determined too: 

                 

The gains   can then be calculated using equations 1 and 2. Since the scale of   is ignored in 
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equation 4, solutions may be found that produce a velocity vector that is directly opposite to that 

which was desired. This can be checked by testing that: 

       

6.1.2.4 StereoPanDownmix 

Stereo output is extremely restricted compared to surround output formats, so a separate method 

is implemented. This is based on a modified downmix from 0+5+0 to 0+2+0. 

The procedure is as follows: 

• The input direction is panned using a point source panner configured for 0+5+0 to produce a 

vector of 5 gains,   , in the order M+030, M-030, M+000, M+110, M-110. 

• A downmix matrix is applied to produce stereo gains    in the order M+030, M-030: 

   

 
 
 
 
 
 
  

  

 
 

 

 
 

  
  

 
  

 

  
 
 
 
 
 

    

This downmix matrix is derived from the matrix in [BS.775], modified so that the downmix 

coefficients for M+000 preserve the velocity vector rather than total power. 

• Power normalise    to a value determined by the balance between the front and rear 

loudspeakers in   , such that sources between M+030 and M-030 are not attenuated, while 

sources between M-110 and M+110 are attenuated by 3 dB. 

                       

                  

  
     

            

    

 
 

 
 

     

 

 

This RegionHandler type is implemented in core.point_source.StereoPanDownmix. 

6.1.3 Configuration Process 

The configuration process builds a point source panner containing the above RegionHandler types 

for a given layout. The configuration process takes a Layout object (defined in § A.1.1.3), and 

produces a PointSourcePanner. 

The configuration process initially selects the behaviour by the Layout::name attribute. If the 

Layout::name attribute is 0+2+0 the configuration is handled by the special configuration function 

for stereo described in § 6.1.3.2. All other cases are handled by a generic function described in 

§ 6.1.3.1. 

The configuration process is handled in core.point_source.configure. 



Tech 3388 EBU ADM Renderer (EAR) 

23 

6.1.3.1 Process for Generic Layouts 

To configure a PointSourcePanner for generic speaker layouts, the following process is used: 

1. Determine the set of remapped virtual loudspeakers as described below. These loudspeakers 

are added to the set of loudspeakers in the layout, to be treated the same as real loudspeakers. 

2. Create two lists of normalised Cartesian loudspeaker positions, which will be used in the next 

steps; one containing the nominal loudspeaker positions (to triangulate the loudspeaker layout), 

and one containing the real loudspeaker positions (to use when creating the regions). Nominal 

loudspeaker positions are the positions specified in [BS.2051], whereas the real loudspeaker 

positions are positions which are actually used by the current reproduction system. 

3. To each list of loudspeaker positions, append one or two virtual loudspeakers, which will 

become the virtual loudspeaker at the centre of a VirtualNgon: 

•          (below the listener) is always added, as no loudspeaker layouts defined in [BS.2051] 

have a loudspeaker in this position. 

•         (above the listener) is added if there is no loudspeaker in the layout with the label 

T+000 or UH+180. The reason this loudspeaker is not used when UH+180 exists, is when this is 

used in the 3+7+0 layout in [BS.2051], the position may coincide with that of the virtual 

loudspeaker, creating a step change in the panning function. 

 

4. Take the convex hull of the nominal loudspeaker positions. If this algorithm is implemented 

with floating point arithmetic, errors may cause some facets of the convex hull to be split — 

facets are merged within a tolerance set such that the result is the same as if the algorithm was 

implemented with exact arithmetic. 

5. Create a PointSourcePannerDownmix with the following regions: 

• For each facet of the convex hull which doesn’t contain one of the virtual loudspeakers added 

in step 3: 

◦ If the facet has three edges, create a Triplet with the real positions of the loudspeakers 

corresponding to the vertices of the facet. 

◦ If the facet has four edges, create a QuadRegion with the real positions of the 

loudspeakers corresponding to the vertices of the facet. 

• For each virtual loudspeaker added in step 3, create a VirtualNgon with the real positions of 

the adjacent loudspeakers (all loudspeakers which share a convex hull facet with the virtual 

loudspeaker) at the edge, the position of the virtual loudspeaker at the centre, and all 

downmix coefficients set to 
 

  
, where   is the number of adjacent loudspeakers. 

• Note that no layouts in [BS.2051] result in facets with more than 4 edges. 

 

The downmix coefficients map the virtual loudspeakers to the physical loudspeakers, as 

described below. 

This is implemented in core.point_source._configure_full. 

Determination of Virtual Loudspeakers with Direct Downmix 

For each mid-layer loudspeaker, a virtual loudspeaker is added on the upper and lower layers at 

the same azimuth as the real loudspeaker if there are no real loudspeakers in the upper or lower 

layer in that area. These virtual loudspeakers have downmix coefficients that map their output 

directly to the corresponding mid-level loudspeaker. 

As with real loudspeakers, virtual loudspeakers have both a real and a nominal position, the real 
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position being derived from the real positions of the real loudspeakers, and the nominal position 

being derived from the nominal positions of the real loudspeakers. The inclusion or not of a virtual 

loudspeaker is based on the nominal positions of the real loudspeakers, so that for a given layout 

the same set of virtual speakers is always used. 

To determine the set of virtual loudspeakers for a given layout, the following procedure is used: 

• For each        , where                        , the number of channels, define: 

                                               

                                                       

                                                 

                                                         

 

• Define three sets of channel indices, identifying channels on the upper, middle and lower 

layers of the layout: 

                   

                    

                     
 

• Virtual loudspeakers have the same nominal and real azimuths as the corresponding real 

loudspeaker. The real elevation is the mean elevation of the real loudspeakers in the layer if 

there are any, or      or     for the lower and upper layers otherwise. The nominal 

elevation is always      or     for the lower and upper layers. 

 

Define two nominal elevations: 

          

           

Define two real elevations: 

       

         
         

    
         

  

       

         
         

    
         

  

• Loudspeakers are only created on a layer if the absolute nominal azimuth of the 

corresponding mid-layer loudspeaker is greater or equal to the maximum absolute nominal 

azimuth of the real loudspeakers on the layer, plus 40°. These azimuth limits are defined as: 

    
       
   
    

                   
  

    
       
   
    

                   
  

• For each   in   : 

◦ Create a virtual upper loudspeaker if        , identified by a Channel struct channel, 

with: 
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◦ Create a virtual lower loudspeaker if        , identified by a Channel struct channel, 

with: 

                                   

                                      

                                           

                                              

 

Both have downmix coefficients routing the gains from this loudspeaker to the corresponding 

mid-layer loudspeaker  . 

This is implemented in core.point_source.extra_pos_vertical_nominal. 

6.1.3.2 Process for 0+2+0 

For 0+2+0, a PointSourcePanner with a single StereoPanDownmix region is returned. 

This is implemented in core.point_source._configure_stereo. 

6.2 Determination if angle is inside a range with tolerance 

A inside_angle_range function is used when comparing angles to given angular ranges, allowing 

ranges to be specified which include the rear of the coordinate system. This is used in the zone 

exclusion and direct speaker components in § 7.3.8.1 and § 8.4. 

The signature is: 

bool inside_angle_range(float x, float start, float end, float tol=0.0); 

This returns true if an angle   is within the circular arc which starts at       and moves 

anticlockwise until    , expanded by    . All angles are given in degrees. 

In the common case where: 

                   

This function is equivalent to: 

                     

Where            for some   such that            . 

In other cases, the behaviour is more subtle. For example, if          and        , this 

specifies the rear half of the coordinate system: 

             

Some example ranges and equivalent expressions are shown in Table 1. 



EBU ADM Renderer (EAR) Tech 3388 

26 

Table 1: Expressions equivalent to inside_angle_range(x, start, end, tol) 

Start End tol Equivalent Expression 

                   

                   

                      

                      

           

                 

                   

                         

           true 

 

This function is implemented in core.geom.inside_angle_range. 

6.3 Determine if a channel is an LFE channel from its frequency metadata 

Frequency metadata, which may be present as frequency sub-elements of audioChannelFormats, 

can be used to determine if a channel is effectively an LFE channel. 

The following data structure is used to represent frequency metadata: 

struct Frequency { 
  optional<float> lowPass; 
  optional<float> highPass; 
}; 

The function with the signature    bool is_lfe(Frequency frequency)    evaluates 

                                                                 

and returns True if the channel is assumed to be an LFE channel and False otherwise. 

This is implemented in core.renderer_common.is_lfe. 

6.4 Block Processing Channel 

When rendering timed ADM metadata, some functionality is required that is the same for all 

typeDefinition values – for a given subset of the input channels, some processing is applied 

between time bounds, producing loudspeaker channels on the output. 

 

Figure 4: Structure used to process related channels. 

Components in blue are provided externally. 
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Figure 4 shows the structure used to achieve this. The interface to this component is as follows: 

class BlockProcessingChannel { 
    BlockProcessingChannel(MetadataSource metadata_source, Callable 
interpret_metadata); 
    void process(int sample_rate, int start_sample, 
        ndarray<float> input_samples, ndarray<float> &output_samples); 
}; 

The MetadataSource is provided by the system as the mechanism for feeding metadata into the 

renderer. It has the following interface: 

class MetadataSource { 
    optional<TypeMetadata> get_next_block(); 
}; 

By repeatedly calling get_next_block, the block processing channel receives a sequence of 

TypeMetadata blocks as described in § 5, which correspond to time-bounded blocks of metadata 

required during rendering. 

These metadata blocks are interpreted by the interpret_metadata function, which is provided by 

the renderer for each typeDefintion. These functions accept a TypeMetadata and return a list of 

ProcessingBlock objects, which encapsulate the time-bounded audio processing required to 

implement the given TypeMetadata. The interpretation for typeDefinition==Objects is described in 

detail in § 7.2. For typeDefinition==HOA and typeDefinition==DirectSpeakers, a single 

ProcessingBlock is returned. 

ProcessingBlock objects have the following external interface: 

class ProcessingBlock { 
    Fraction start_sample, end_sample; 
    int first_sample, last_sample; 
 
    void process(int in_out_samples_start, 
        ndarray<float> input_samples, ndarray<float> &output_samples); 
} 

The samples passed to process are assumed to be a subset of the samples in the input/output file, 

such that                  and                   represent the global input and output 

samples                       . The first_sample and last_sample attributes define the 

range of global sample numbers   which would be affected by process: 

                           

start_sample and end_sample are the fractional start and end sample numbers, which are used to 

determine the first_sample and last_sample attributes, and may be used by ProcessingBlock 

subclass implementations. 

BlockProcessingChannel objects store a queue of ProcessingBlock, which is refilled by 

requesting blocks from the metadata_source and passing them through interpret_metadata. 

BlockProcessingChannel.process applies processing blocks in this queue to the samples passed 

to it, using first_sample and last_sample to determine when to move to the next block. 

This structure allows components of the renderer to be decoupled; audio samples may be processed 

in chunks sizes independent of the metadata block sizes, while retaining sample-accurate metadata 

processing, and without complicating the renderers with concrete timing concerns. 
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The decision to allow the renderer to pull metadata blocks in keeps the interpretation of timing 

metadata within the renderer — if metadata was instead pushed into the renderer, the component 

doing the pushing would have to know when the next block is required, which depends on the 

timing information within it. 

This functionality is implemented in core.renderer_common. 

6.4.1 Implemented ProcessingBlock Types 

Three common processing block types are: 

FixedGains takes a single input channel and applies   gains, summing the output into   output 

channels. 

FixedMatrix takes   input channels and applies a     gain matrix to form   output channels. 

InterpGains takes a single input channel and applies   linearly interpolated gains, summing the 

output into   output channels. Two gain vectors gains_start and gains_end are provided, which 

are the gains to be applied at times start_sample and end_sample. The gain        applied to 

channel   at sample   is given by: 

     
              

                       
 

                                                 

6.5 Generic Interpretation of Timing Metadata 

The determination of block start and end times is shared between renderers for different 

typeDefinitions. For a TypeMetadata object block, the following process is used: 

• The start and end time of the object which contains the block is determined from 

block.extra_data.object_start and block.extra_data.object_duration. If 

object_start is None, the object is assumed to start at time  . If object_duration is None, 

it is assumed to extend to infinity. 

• The block start and end times are determined from the rtime and duration attributes: 

◦ If rtime and duration are not None, then the block start time is assumed to be the 

object start time plus rtime, and the block end time is assumed to be the block start 

time plus duration. 

◦ If rtime and duration are None, then the block is assumed to extend from the object 

start time to the object end time. 

◦ Other rtime and duration constellations are considered to be an error. — for multiple 

audioBlockFormat objects within an audioChannelFormat, both rtime and duration 

should be provided, while for a single block covering the entire audioObject, no rtime or 

duration should be provided. Otherwise, the behaviour is undefined. 

 

The times should be checked for consistency. Blocks ending after the object end time or 

overlapping blocks in a sequence are not allowed and considered to be an error An error condition 

means that implementers must consider that something is wrong with the input data. The correct 

course of action is to fix the system that produced it. In the reference implementation, errors are 

handled by stopping the rendering process end reporting the error to the user. Other 

implementations might use different error handling strategies based on their target application 

environment. 
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This is implemented in core.renderer_common.InterpretTimingMetadata. 

7. Render Items with typeDefinition==Objects 

7.1 Structure 

 

Figure 5: Structure of the Objects renderer 

The structure of the renderer for typeDefinition==Objects is shown in Figure 5. This diagram shows 

the processing applied for a single rendering item; rendering multiple items behaves as if this 

structure is duplicated for each item, with the outputs mixed together. 

Metadata enters the renderer in the form of an ObjectRenderingItem object, which contains a 

track index, and a source of ObjectTypeMetadata objects representing time-bounded rendering 

parameters for the identified track. 

For each ObjectTypeMetadata object, the method described in § 7.2 is applied; this interprets the 

timing metadata, and calculates gain vectors using the gain calculator described in § 7.3. This 

produces ProcessingBlock objects, which apply time-bounded signal processing operations to the 

input audio to produce a direct and diffuse bus, each containing one channel per loudspeaker. This 

approach, and the BlockProcessingChannel class which encapsulates it is described in § 6.4. 

The diffuse bus is passed through a per-channel decorrelation filter bank, and the direct bus is 

delayed to match, before being mixed together to form the output. The decorrelation filters and 

delays are described in § 7.4. 

This structure is implemented in core.objectbased.renderer.ObjectRenderer. 
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7.2 InterpretObjectMetadata 

Object timing metadata is interpreted in the InterpretObjectMetadata class, which fits into the 

block processing channel structure. 

 

Figure 6: Example audioBlockFormats and the interpreted interpolation curves 

For each input ObjectTypeMetadata, the following process is used: 

• The start and end time start_time and end_time of the block are determined according to 

§ 6.5. 

• The time at which interpolation in this block ends, target_time is determined according to 

the following cases, which are illustrated by corresponding blocks in Figure 6: 

A 

If this is the first block, or if the end_time of the previous block is less than the start_time of 

the current block, then: 

                       

B 

If bf.jumpPosition.flag is set, and bf.jumpPosition.interpolationLength is not None, 

then: 

                                                           

C 

If bf.jumpPosition.flag is set, and bf.jumpPosition.interpolationLength is None, then: 

                       

D 

If bf.jumpPosition.flag is not set, then interpolation occurs over the whole block: 

                     

• Gain vector interp_to is calculated using a GainCalculator instance for the current block. 

interp_from is the gain vector calculated for the previous block. 

• If                       , an InterpGains ProcessingBlock is created, which 
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interpolates from interp_from to interp_to between start_time and target_time. 

• If                     , an FixedGains ProcessingBlock is created, which applies 

interp_to between start_time and target_time. 

 

This is implemented in core.objectbased.renderer.InterpretObjectMetadata. 

7.3 Gain Calculator 

Given an ObjectTypeMetadata object, this object calculates a gain for each loudspeaker on the 

direct and diffuse paths. The interface to this component is: 

struct DirectDiffuseGains { 
    vector<float> direct; 
    vector<float> diffuse; 
}; 
 
class GainCalc { 
    GainCalc(Layout layout); 
 
    DirectDiffuseGains render(ObjectTypeMetadata otm); 
}; 

7.3.1 Structure 

This component is primarily a composite of the sub-components listed in this section. A diagram of 

the signal flow between these components for non-LFE content is shown in Figure 7. The behaviour 

for an ObjectTypeMetadata otm containing a block_format attribute bf is as follows: 

• The coordinate transform described in § 7.3.2 is applied to bf.position and bf.cartesian to 

yield a CartPosition object position. 

• Screen scaling is applied using the method described in § 7.3.3, with the parameters 

position, bf.screenRef, otm.extra_data.reference_screen, updating position. This 

component is initialised with layout.screen. 

• Screen edge lock is applied using the method described in § 7.3.4, with the parameters 

position and bf.position.screenEdgeLock, updating the position with the result. This 

component is initialised with the reproduction screen (layout.screen). 

• Channel lock is applied using the method described in § 7.3.5, with the parameters position 

and bf.channelLock, again updating the position. This component is initialised with 

reproduction speaker layout excluding the LFE channels. 

• Divergence is applied using the method described in § 7.3.6, with the parameters position, 

bf.objectDivergence and bf.cartesian. This results in up to 3 extended sources with 

gains and positions stored in diverged_gains and diverged_positions. 

• The extent panner described in § 7.3.7 is applied to each p in diverged_positions, with 

parameters p, bf.width, bf.height, bf.depth and bf.cartesian. This results in a per-

loudspeaker gain vector stored in gains_for_each_pos. 

• The gains in gains_for_each_pos are mixed together with a power determined by 

diverged_gains: 
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• Zone exclusion as described in § 7.3.8 is applied to gains and bf.zoneExclusion, resulting 

in a new gains vector. This component is initialised with layout.without_lfe. 

 

Figure 7: Structure of the gain calculator for typeDefintion==Objects 

• If otm is an LFE element according to is_lfe(otm.extra_data.channel_frequency) as 

defined in § 6.3, then: 

◦ An LFE downmix matrix calculated as described in § 7.5 is applied to gains, to distribute 

the loudspeaker gains between the LFE channels, yielding gains_full. 

◦ gains_full amplitude normalised by dividing by sum(gains_full). 

◦ gains_full is multiplied by bf.gain. 
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◦ A DirectDiffuseGains is returned with direct set to gains_full and diffuse set to 

zeros. 

• Otherwise: 

◦ gains is multiplied by bf.gain. 

◦ gains is extended by LFE channel gains with value   to produce gains_full as required 

by the reproduction layout. 

◦ gains_full is split into a direct and diffuse vector to control the direct and diffuse 

paths, depending on the bf.diffuse parameter. These are returned as a 

DirectDiffuseGains with attributes: 

                               

                              
 

7.3.1.1 Discussion 

The structure of the gain calculator is influenced by the following two principles: 

• If the parameters are sparse (i.e. only a small number of the possible metadata fields are 

used), the obvious interpretation of those parameters should be preserved. 

• When combinations of parameters are used together, the option that gives the user the most 

possibilities for different useful behaviours is chosen. 

For example: 

• Channel lock is implemented as a position modification — if channel lock is used by itself 

(with appropriate maxDistance) then the source will be locked to a channel because of the 

behaviour of the point source panner, however channel lock can also be used with extent 

parameters to produce an extended source centred around a particular loudspeaker, for 

example. 

• Diffuseness is not linked to extent — a fully extended diffuse source can be obtained by 

setting the extent parameters appropriately, but this also allows for use of the decorrelation 

filtering with less-than-full extents. 

7.3.2 Coordinate Transformation 

A coordinate transform is implemented in core.objectbased.gain_calc.coord_trans, which is 

used to convert incoming positions into a uniform Cartesian spherical coordinate. It has the 

following signature: 

CartesianPosition coord_trans(ObjectPosition position, bool cartesian); 

position is first converted to a Cartesian vector. 

If cartesian is true, the position is warped by cube_to_sphere, regardless of whether the 

position was originally specified using polar or Cartesian coordinates. This function is described 

below. 

7.3.2.1 Cubic and Spherical Spaces 

Independent of polar or Cartesian vector representations, two spaces of coordinates are considered 

in the renderer: 

Cubic 

Coordinates which are on the surface of a 2-unit cube centred at the origin are considered to be on 
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the convex hull of the loudspeakers, and therefore have no distance effects applied. 

Spherical 

Coordinates which are on the surface of a unit sphere centred at the origin are considered to be on 

the convex hull of the loudspeakers, and therefore have no distance effects applied. 

Input coordinates are considered to be in cubic space if the cartesian block format flag is set, or 

spherical otherwise. 

Two functions cube_to_sphere and sphere_to_cube, defined in core.objectbased.gain_calc 

are used to convert between positions in these coordinate spaces, by scaling the length of 

coordinates and preserving the direction: 

                     

       
    

    
         

 

                     

       
    

    
         

 

 

Where      is the maximum norm: 

                         

7.3.3 Screen Scaling 

The screen scaling component warps source positions in order to compensate for differences in 

screen geometry between the production and reproduction environments. The interface to this 

component is: 

class ScreenScaleHandler { 
  ScreenScaleHandler(Screen reproduction_screen); 
  CartesianPosition handle( 
    CartesianPosition position, 
    bool screenRef, 
    Screen reference_screen 
  ); 
}; 

The two screen definitions used are: 

Reference Screen 

The audioProgrammeReferenceScreen listed in the audioProgramme element, or the default 

polar screen size if not provided. This was the screen geometry used during production of the 

metadata. 

Reproduction Screen 

Screen geometry in the reproduction environment in which the output of the renderer will be 

listened to. 

Positions within the reference screen are warped so that they appear at corresponding positions in 

the reproduction screen. 
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7.3.3.1 Internal Screen Representation 

Information about both screens can be provided in either polar or Cartesian coordinates 

(PolarScreen or CartesianScreen objects). Unlike object source positions, there is no obvious 

equivalence between the two, but in order to simplify the implementation a single screen 

representation is required which can represent both screen types. This is the purpose of the 

PolarEdges structure, which stores the azimuths of the left and right screen edges, and the 

elevations of the top and bottom screen edges: 

struct PolarEdges { 
    float left_azimuth; 
    float right_azimuth; 
    float bottom_elevation; 
    float top_elevation; 
}; 

7.3.3.2 Direction Warping 

The warping of positions is defined in  

core.screen_scale.PolarScreenScaler.scale_direction. Given the reference screen 

PolarEdges ref and the reproduction screen PolarEdges rep, this works as follows: 

• The azimuth, elevation and distance of the input position is determined. 

• Piecewise linear interpolation is applied to the azimuth, mapping from the values 

                                              

to 

                                              

• Piecewise linear interpolation is applied to the elevation, mapping from the values 

                                                

to 

                                                

• The modified azimuth and elevation and the original distance are converted back to a 

Cartesian vector. 

7.3.3.3 Metadata Interpretation 

If screenRef is set and the reproduction screen is provided, the position is passed through 

PolarScreenScaler.scale_direction with the reference and reproduction screen set. 

Otherwise, the position is returned unmodified. 

7.3.4 Screen Edge Lock 

The screen edge lock component warps source positions in order to place the source on the 

indicated edge of the screen. It has the following interface: 

class ScreenEdgeLockHandler { 
  ScreenEdgeLockHandler(Screen reproduction_screen); 
 
  CartesianPosition handle_vector( 
    CartesianPosition position, 
    ScreenEdgeLock screen_edge_lock 
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  ); 
 
  tuple<float, float> handle_az_el( 
    float azimuth, 
    float elevation, 
    ScreenEdgeLock screen_edge_lock 
  ); 
}; 

On initialisation, this component transforms the reproduction_screen into a PolarEdges object 

polar_edges, as specified in § 7.3.3.1. 

At run time, the azimuth, elevation and distance components of position are modified 

independently, resulting in a new position: 

• If screen_edge_lock.horizontal is LEFT, then the azimuth is set to 

polar_edges.left_azimuth; if it is RIGHT, then the azimuth is set to 

polar_edges.right_azimuth; otherwise the azimuth is unchanged. 

• If screen_edge_lock.vertical is TOP, then the elevation is set to 

polar_edges.top_elevation; if it is BOTTOM, then the elevation is set to 

polar_edges.bottom_elevation; otherwise the elevation is unchanged. 

• The distance is unchanged. 

 

The processing takes place in the polar domain, hence Cartesian positions have to be converted 

first. The back and forth conversion is applied if the handle_vector method is used instead of the 

handle_az_el method. 

This component is implemented in core.screen_edge_lock.ScreenEdgeLockHandler. 

7.3.5 Channel Lock 

Channel lock is implemented as a position transformation. If channelLock is set and a loudspeaker is 

within the range specified in maxDistance, the position will be transformed to the position of the 

loudspeaker closest to the original position. In the absence of divergence, extent, zone exclusion 

and diffuse metadata the source will be reproduced directly by the selected loudspeaker. 

Channel lock is implemented in core.objectbased.gain_calc.ChannelLockHandler with the 

following signature: 

class ChannelLockHandler { 
  ChannelLockHandler(Layout layout); 
  CartesianPosition handle( 
    CartesianPosition position, 
    optional<ChannelLock> channelLock 
  ); 
}; 

To apply channel lock metadata, the following procedure is used: 

• If channelLock is None, return the original position. 

• Otherwise, the loudspeaker whose normalised position is closest to position by    distance 

is identified. 

◦ If there is no unique closest loudspeaker (within some tolerance), then the loudspeaker 

from the set of closest loudspeakers with the highest priority is chosen. Priority ordering 
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of loudspeakers is determined by lexicographic comparison of the tuple: 

              

◦ Where   and   are the real azimuth and elevation of the loudspeaker. Lower tuples have 

higher priority — loudspeakers with lower absolute elevations have highest priority, with 

ties broken by the elevation, then the absolute azimuth, then the azimuth. 

• If channelLock.maxDistance is None or the    distance of this loudspeaker is less than or 

equal to channelLock.maxDistance, the normalised position of the loudspeaker is returned. 

Otherwise, position is returned. 

7.3.6 Divergence 

Divergence is implemented by adding two additional source positions    and    to the left and the 

right of the original source position   . To ensure the loudness of the item does not change, each 

source position is associated with a gain value   ,    and   . 

The Divergence metadata is interpreted in core.objectbased.gain_calc.diverge, with the 

following signature: 

tuple<vector<float>, vector<CartesianPosition>> diverge( 
  CartesianPosition position, 
  ObjectDivergence objectDivergence, 
  bool cartesian 
); 

This function accepts a 3D position (in this case, the output of the Channel Lock function) and 

applies the divergence metadata supplied in objectDivergence. Three source positions and 

associated gains are produced, each of which are passed to the extent panner for rendering. 

The calculation of these gains and positions is described below. 

7.3.6.1 Calculation of Gains 

For a given objectDivergence.value  , the three gains are calculated as follows: 

   
   

   
 

      
 

   
 

This satisfies the following requirements: 

•                

•                  

•   
 

 
          

 

 
 

•                    

7.3.6.2 Calculation of Positions 

The positions produced depend on the cartesian flag in the block format. A warning is raised if 

azimuthRange and cartesian are set, or if positionRange is set and cartesian is not. 

Behaviour when cartesian == true 

In Cartesian mode, the original cubic space position has been warped into spherical space by the 
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coordinate transform in § 7.3.2. In order to apply divergence in this mode, the position is translated 

back to cubic space, diverged, and then translated back to spherical space again. This ensures that 

the diverged positions for a central position with     will appear like other sources with    , 

without distance effects applied. 

For a position value   and objectDivergence.positionRange value  , the three positions are 

calculated as: 

                     

               

               

 

These are then translated back to sphere-space: 

                      

                      

                      

 

Behaviour when cartesian == false 

Positions are calculated for a given objectDivergence.azimuthRange   such that from the 

perspective of the listener the left and right sources are   degrees to the left and right of the 

centre, and all three sources are in a straight line. 

This is achieved by defining three positions centred around the   -axis at a distance        , 

where    is the original source position: 

                

                 

                

These are then rotated around the original source direction by the rotation matrix  , which is 

defined such that     is mapped onto the original source position   : 

                             

7.3.7 Extent Panner 

The ADM extent parameters are handled in core.objectbased.gain_calc.ExtentHandler; this 

uses the modules described below to produce a gain vector for given position and extent 

parameters. 

The interface to this class is: 

class ExtentHandler { 
  ExtentHandler(PointSourcePanner psp); 
 
  vector<float> handle( 
    CartesianPosition position, 
    float width, 
    float height, 
    float depth, 
    bool cartesian); 
}; 
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Figure 8: Structure of the Extent Handler 

The structure of the ExtentHandler class is shown in Figure 8. 

Internally, this object holds a reference to a PolarExtentPanner as described in § 7.3.7.2 and a 

CartExtentPanner as described in § 7.3.7.3 and uses these to calculate the gain vectors. 

If the cartesian flag is set, the position and size are passed to the CartExtentPanner to generate 

the returned loudspeaker gain vector, as described in § 7.3.7.3. 

If the cartesian flag is not set, then the width, height and position parameters are duplicated 

and modified to handle depth parameter and the distance component of position; these 

parameters are passed through the Polar Extent Panner in order to generate a loudspeaker gain 

vector for each, and finally these gain vectors are mixed together. This procedure is described in 

§ 7.3.7.2. 

Both Cartesian and polar extent rendering modes use the Spreading Panner to generate loudspeaker 

gains, as described below. 

7.3.7.1 Spreading Panner 

The shape of extended sources in the renderer is defined in terms of a weighting function, which 

given a 3D direction can calculate a weight for that direction. This weight can be thought of as the 

amount that a given object should be reproduced in a given direction. For example, for a source in 

front of the listener which is wider than it is tall, a weighting function like the one represented in 

Figure 10 may be used. 

By producing per-loudspeaker gains which reflect this weighting function, applying these gains to 

the mono waveform of an object, and applying decorrelation filtering to the resulting channels, an 

impression of an extended or diffuse sound source with the intended extent parameters can be 

achieved. 

To calculate a gain vector for a given weighting function, the SpreadingPanner class is used. 

Objects of this type hold a set of virtual source positions, and a loudspeaker gain vector for each of 

these positions. 

During start-up, the point source panner is used the calculate the gain vector for each position. 
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To calculate the gain vector for a given weighting function, the weighting function is applied to the 

virtual source positions. The resulting per-virtual-source gain vector is multiplied by the pre-

calculated loudspeaker gain vectors to obtain a single per-loudspeaker gain vector. This is then 

power normalised to obtain the final gain vector. 

This is implemented in core.objectbased.extent.SpreadingPanner. 

7.3.7.2 Rendering Polar Extent 

The procedure used to calculate loudspeaker gains for position, width, height and depth 

parameters in polar mode is as follows: 

• The depth parameter is interpreted as two extended sources with the same direction but 

different distances. The two distances are: 

                     
     

 
 

                     
     

 
 

 

• For each distance, the Polar Extent Panner is used to calculate gain vectors     and     from 

the position, and the width and height modified by the Polar Extent Modification Function, 

described below. 

• The gain vectors are mixed together to produce the output gain vector  , where    is the gain 

for loudspeaker  : 

         
 

      
 

 
 

Polar Extent Modification Function 

The extent modification function is used to modify the width and height parameters given the 

distance parameter. 

It has the following properties: 

• At           , the extent is always     . 

• At           , the original extent is used. 

• At           , the extent decreases as the distance increases. 

• When             , the extent changes more steeply around            for smaller 

extents. 

The extent modification function for extent and distance is defined as follows: 

• The extent in degrees is mapped linearly to an extent along the x axis, with a minimum size 

of : 

             

              
                   

    
 

• A right triangle if formed, with the adjacent edge being the distance, and the opposite edge 

being the distance. The angle formed is then used to determine a new extent; this is 

calculated for a distance of   and         : 
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• Piecewise linear interpolation is applied to map    back to the original extent when      : 

            

       
  

  
     

                     
     

       
     

  

This is implemented in core.objectbased.gain_calc.ExtentHandler.extent_mod. The shape of 

the extent modification function is shown in Figure 9. 

 

Each line shows how the output extent varies over distance for a given input extent. The 

extent is not modified where distance=1, so for example the lowermost line shows how the 

modified extent varies over distance for an input extent of 0. 

Figure 9: Extent modification function for polar extended sources 

Polar Extent Panner 

In order to handle the full range of positions and extents allowed in the ADM, the size must be 

modified before the Polar Weighting Function can be applied. The following steps are used: 

• A modified width and height is computed as               and               ; these are 

used with the spreading panner described in § 7.3.7.1 and the Polar Weighting Function 

described below to yield a spread gain vector. 

• The position is passed to the point source panner to yield a point source gain vector. 

• The two vectors are mixed together so that for zero width and height, the point source gains 

are used exclusively, while if either the width or height is greater than   , the spread gains 

are used exclusively. 

 

This is required to support small extents — here the non-zero part of the spreading function must 

be large enough to cover multiple sampling points in order to produce smooth gains, and this 

imposes a minimum amount of spread, which may be larger than the desired amount. 

This is implemented in core.objectbased.extent.PolarExtentPanner.calc_pv_spread. 
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Polar Weighting Function 

The weighting function for polar extent rendering is parametrised by a 3D Cartesian vector 

position, and angles width and height in degrees. Since the distance component of the position 

is not used, this can be considered as a direction. 

The weighting function is as follows: 

• A rotation matrix is calculated which maps the position         (directly in front of the 

listener) to the position of the source. This rotation matrix takes the form of a rotation 

around         followed by a rotation around        . This is implemented in 

core.objectbased.extent.calc_basis. 

• If the height is greater than the width, then the coordinate system is flipped to simplify the 

calculation, as the weighting function for a source with width   and height   should be the 

same as the weighting function for a source with width   and height  , rotated     around 

the source position. This is achieved by swapping the width and height variables, and 

swapping the   and   rows of the rotation matrix. See, for example, Figure 10 & Figure 11, 

which have the same shape but are rotated     (ignoring the warping caused by the 

projection used). 

 

Figure 10: Polar weighting function for width=90° and height=30° 

 

Figure 11: Polar weighting function for width=30° and height=90° 
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• The approximate weighting function is now   inside a maximally-rounded              

rectangle (stadium) in azimuth-elevation space, with a few modifications: 

◦ The rounded caps are circular in Cartesian space, as the weight is calculated based on 

the angle from two vectors at their centre. When             , the weighting 

function is circular. 

◦ At           , the width is increased so that when the width reaches      the 

rounded parts overlap completely, forming a ‘band’, where the weighting function has 

the same value for all positions of the same elevation. See Figure 12 & Figure 13. 

 

Figure 12: Polar weighting function for width=300° and height=30° 

 

Figure 13: Polar weighting function for width=360° and height=30° 

 

◦ A fade is added to the edge of the weighting function; the weight drops from   to   as 

the angular distance from the extent reaches    . 

 

This function is implemented in core.objectbased.extent.PolarExtentPanner.get_weight_func. 
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7.3.7.3 Rendering Cartesian Extent 

In order to handle the full range of positions and extents allowed in the ADM, the size must be 

modified before the spread panner can be used with the Cartesian Weighting Function described 

below to calculate the loudspeaker gains. 

The procedure used to calculate loudspeaker gains for position, width, height and depth 

parameters in cartesian mode is as follows: 

• The ADM width, height and depth parameters are the distance from one edge of the extent to 

another, so the sizes are halved to match the definition of the ellipsoid used by the Cartesian 

Weighting Function. 

• If the extent is small, then a step in the loudspeaker gains may occur as the position moves 

through the origin of the coordinate system, so the size along each axis is linearly 

interpolated between the original size at          and a minimum size at         . 

The minimum size is given by              

• A spread gain vector is produced using the Cartesian Weighting Function and the spreading 

panner described in § 7.3.7.1, using the modified extent above, with the size along each axis 

increased to at least the minimum extent. A point source gain vector is produced using the 

point source panner. The extended and point source gains are mixed together so that for zero 

extents, only the point source gains are used, and for extents where the size of any axis is 

over the minimum extent, only the extended gains are used. 

This is done to avoid using the spreading panner for small extents, where the discrete sampling 

of the weighting function may result in gains which do not change smoothly with respect to the 

parameters. 

This is implemented in core.objectbased.extent.CartExtentPanner.calc_pv_spread. 

Cartesian Weighting Function 

The weighting function for Cartesian extent rendering is parametrised by 3D Cartesian vectors 

position,   and size  . These vectors define an ellipsoid, with surface points   described by: 

  
    

   
 

 
        

The weight for a virtual source positioned at   is the square of the distance that the ray    for 

    is inside this ellipsoid. The squared distance is used to avoid high rates of change for rays 

which pass through the edge of the ellipsoid. 

             
     

   
 

 
 

 

 

    

 

 

Where   is the Heaviside step function. 

This is solved by substituting      into equation 5 to yield a quadratic, and solving for  , to find 

the distances    and    along the ray where the intersections with the ellipsoid lie. Then: 

                            

If there are no real solutions then       . 

This method is implemented in core.objectbased.extent.CartExtentPanner.get_weight_func. 
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7.3.8 Zone Exclusion 

Zone exclusion is applied by downmixing the loudspeaker gain vector produced earlier in the gain 

calculator in order to avoid sending output to loudspeakers in the excluded zone. This can be split 

into two parts: deciding which of the loudspeakers are within the excluded zone, in § 7.3.8.1, and 

calculating the downmix to route away from the excluded loudspeakers, in § 7.3.8.2. 

Both the selection of excluded loudspeakers and the calculation of the downmix matrix only 

consider the nominal position of loudspeakers, so that small changes in the loudspeaker positions 

do not affect the behaviour of zone exclusion. 

7.3.8.1 Selecting Excluded Loudspeakers 

The selection of loudspeakers is implemented by processing a list of ExclusionZone objects, 

producing a boolean flag for each loudspeaker which is true if the loudspeaker is within any of the 

exclusion zones and should therefore be excluded. 

For CartesianZone objects, the following expression is used to determine if a loudspeaker is 

within the zone, where         is the nominal position of the loudspeaker, converted from polar 

with a radius of 1: 

               
                
                

 

Where        is a safety margin to allow for rounding errors when converting between polar and 

Cartesian coordinates. 

For PolarZone objects, the following expression is used to determine if a loudspeaker is within the 

zone, where   and   denote the nominal azimuth and elevation of the loudspeaker. 

                               

  
        

                               
 

 

    is the function inside_angle_range; see § 6.2. 

Broadly, the elevation of the loudspeaker must be within the allowed range, while the azimuth only 

has to be within the allowed range if the absolute elevation is less than 90 degrees. 

This is implemented in core.objectbased.gain_calc.ZoneExclusionHandler.get_excluded. 

7.3.8.2 Downmix for Excluded Loudspeakers 

Once the loudspeakers within the zone have been determined, a downmix matrix is designed to 

route the gains away from these loudspeakers. 

The zone exclusion panner object associates with each loudspeaker in the layout a list of groups of 

output loudspeakers. The downmix matrix is such that the gain from an excluded loudspeaker is 

routed to all the non-excluded loudspeakers in the first group for which there are non-excluded 

loudspeakers. This functionality is described in more detail in the next two sections. 

As an example, Table 2 shows the groups for loudspeakers in 4+5+0. The first row shows that if 

M+030 is excluded, the output for this speaker would be routed to M+000, unless this is excluded in 

which case it would be routed to M-030, etc. until U-110. 
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Table 2: Example loudspeaker association for 4+5+0 

Input Output Groups 

             ,        ,        ,        ,        ,        ,        ,        ,         

             ,        ,        ,        ,        ,        ,        ,        ,         

             ,              ,              ,              ,               

             ,        ,        ,        ,        ,        ,        ,        ,         

             ,        ,        ,        ,        ,        ,        ,        ,         

             ,        ,        ,        ,        ,        ,        ,        ,         

             ,        ,        ,        ,        ,        ,        ,        ,         

             ,        ,        ,        ,        ,        ,        ,        ,         

             ,        ,        ,        ,        ,        ,        ,        ,         

 

A more complicated example where the grouping has some effect is M+000. If this is excluded, then 

this channel would be split between the non-excluded loudspeakers in              , unless 

both of these loudspeakers are excluded in which case it would be routed to the non-excluded 

loudspeakers in              , etc.  

This functionality is implemented in core.objectbased.zone.ZoneExclusionDownmix and 

core.objectbased.gain_calc.ZoneExclusionHandler. 

Determination of Loudspeaker Groups 

During initialisation, the output loudspeaker groups for each loudspeaker are determined. 

For each input loudspeaker, each output loudspeaker is assigned a tuple of floats termed a key. 

The output groups then consist of the output loudspeakers sorted by key, and collected into groups 

with similar keys. The ordering and grouping is therefore defined mainly by the key function. 

The key for an input and output loudspeaker consists of 4 keys: 

• An integer layer priority, which is zero if both loudspeakers are on the same layer, and 

increases as the input and output layers are separated, preferring to select a speaker from a 

higher layer before a lower one. The layer priorities are drawn from Table 3. 

• An integer front/back priority, which is lower if input and output loudspeakers are both in 

front, to the side of, or behind the listener. Given the   component of the polar nominal 

position of the input and output loudspeakers after converting to Cartesian,    and   , this is 

calculated as: 

              

• The vector distance between the nominal positions of the two loudspeakers, in order to 

prefer smaller movements. 

• The absolute difference in nominal   coordinates between the two loudspeakers, in order to 

split groups which are not symmetrical around the    or    planes. 

Table 3: Layer priority value between two loudspeakers. 

Input Layer Bottom Mid Upper Top 

Bottom 0 1 2 3 

Mid 3 0 1 2 

Upper 3 2 0 1 

Top 3 2 1 0 
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Application of Zone Exclusion 

The downmix matrix for a set of excluded loudspeakers   is calculated as follows: 

• For   loudspeakers, start with an     downmix matrix  , with each element initialised to 

 . 

• For each input loudspeaker  , consider each group of candidate loudspeaker indices   in row   

of the group table. 

◦ If all loudspeakers in the group are in the set of ignored loudspeakers, that is    , 

move to the next group. 

◦ Otherwise, for each   in     (the set of loudspeakers in the group that is not excluded), 

set: 

     
 

     
 

and move to the next loudspeaker. 

If all loudspeakers are excluded,   is set to the identity matrix. 

  is then applied to the incoming gain vector   to produce   , by: 

        
 

 

     

7.4 Decorrelation Filters 

When rendering objects where the diffuse parameter is greater than 0, the diffuse path of the 

object renderer is used, which has one decorrelation filter per loudspeaker output. 

The filters used are       sample long random-phase allpass FIR filters. The filter for a given 

output is generated as follows: 

• A pseudorandom vector   with values in the range       of length 
 

 
   is generated using the 

MT19937 pseudorandom number generator, seeded with the index of the channel name in a 

sorted list of all channel names in the layout. 

• A phase vector   of length 
 

 
   is defined as: 

              
 

 
  

          

  

• The corresponding frequency vector   is defined as            . 

• An inverse real-valued Fourier transform (irfft function) is taken of the non-negative-

frequency components in   to obtain the time-domain filter. 

 

This is implemented in core.objectbased.decorrelate.design_decorrelators. 

The delay introduced by these filters is matched by a 
     

 
 sample delay in the direct path. 
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7.5 LFE downmix matrix calculation 

The downmix matrix      mixes each non-LFE channel signal to one of the available LFE channels. 

It is calculated as follows: 

• If the reproduction layout does not have any LFE channels, the downmix matrix is empty. 

• If the reproduction layout does have exactly one LFE channel with index  , all gains from each 

loudspeaker with index   to the LFE channel are set to one: 

       

• If the reproduction layout has exactly two LFE channels, the matrix coefficients for each 

loudspeaker with index   to the LFE channels with indices   and   are calculated as follows: 

 

Let    and    be the position of the two LFE loudspeakers, and    be the position of the  th 

loudspeaker. 

The calculated gain is the projection of the position onto the vector between    and   , scaled 

to 1 at   : 

       

   
 

       

            

                  

         

       

 

Where      denotes the downmix coefficient for the  -th loudspeaker to the first LFE 

channel,      denotes the downmix coefficient for the  -th loudspeaker to the second LFE 

channel. 

This is implemented in core.subwoofer.lfe_downmix_matrix. 

8. Render Items with typeDefinition==DirectSpeakers 

To render an audioChannelFormats with typeDefintion==DirectSpeakers it is routed to a matching 

speaker. If this is not possible the PSP will be used as a fallback. 

The basic algorithm is as follows: 

1. Determine if the metadata refers to an LFE channel (see § 8.1). If it does, then only LFE outputs 

will be considered, and if it doesn’t, only non-LFE outputs will be considered. 

2. If any of the speakerLabels match a loudspeaker (see § 8.2) the channel is routed to the first 

loudspeaker that matches. If no speakerLabel matches, continue to the next step. 

3. If screenEdgeLock is specified the nominal position will be shifted to the horizontal and/or 

vertical edge of the screen. The minimum and maximum bounds are left untouched (see § 8.3). 

4. If the nominal position of any loudspeaker is within the specified position bounds (see § 8.4), 

route the channel to the loudspeaker closest to the specified nominal position. If there are no 

loudspeakers within the bounds, or the closest loudspeaker to the nominal is not unique), 

continue to the next step. 

5. If the metadata refers to an LFE route the channel to LFE1 (if it exists), or discard it. If the 

metadata refers to a non-LFE channel, use the PSP to render the channel at its nominal 

position. 
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The following subsections describe the individual steps in more detail. 

This is implemented in core.direct_speakers.panner.DirectSpeakersPanner. 

8.1 LFE Determination 

A channel is considered to be an LFE channel if either the frequency element in the 

audioChannelFormat has a lowPass of         (see § 6.3), or if there is a speakerLabel which 

refers to an LFE channel (LFE1 or LFE2 after the matching process described below has been 

applied). 

8.2 Speaker Label Matching 

The matching for speakerLabels only works for the labels used in [BS.2051] (e.g. M+030) and the 

URNs used in the common definitions file [BS.2094] (e.g. urn:itu:bs:2051:0:speaker:M+030). To 

bring the labels of the common definitions in line with the labels in [BS.2051] some substitutions 

are applied: 

• LFE → LFE1 

• LFEL → LFE1 

• LFER → LFE2 

8.3 Screen Edge Lock 

The screenEdgeLock implementation for typeDefintion==DirectSpeakers reuses the  

ScreenEdgeLockHandler used for typeDefintion==Objects; described in detail in § 7.3.4. It is used 

to transform the nominal position only; the minimum and maximum bounds will be left untouched. 

This means that if bounds are specified then they are interpreted as absolute bounds irrespective 

of the screen position; the source will only lock to a channel within the original specified bounds. If 

bounds are not specified, then the point source panner behaviour will be activated, causing the 

source to lock to the edge of the screen regardless of if there is a loudspeaker there or not. It is 

recommended that screenEdgeLock and coordinate bounds should not be used together. 

8.4 Bounds Matching 

A specified minimum or maximum bound expands the allowable range away from the nominal 

position. If the minimum or maximum bound is not specified it is set to the nominal coordinate. A 

speaker matches if all coordinates lie within the specified bounds. With the exception, that 

speakers with polar coordinates at the poles (e.g. T+000) match any azimuth range, as they have 

an indeterminate azimuth. 

A loudspeaker with polar position speaker matches if 

 
                                                

                           
 

                                                   
                                                

 

Where     is the function inside_angle_range (see § 6.2) and        is a safety margin to allow 

for rounding errors. 

A loudspeaker with Cartesian position speaker matches if 
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is true. 

9. Render Items with typeDefinition==HOA 

9.1 Supported HOA formats 

9.1.1 HOA order and degree 

HOA signals, as defined by the ADM standard, can be rendered up to the order 50 (see details 

below). In ADM, the HOA channels are signalled individually by their order and degree via the 

corresponding HOA type sub-elements. Thus, full-3D HOA scenes (comprised of every order   and 

degree   up to a given order  ), 2D HOA scenes (comprised of every HOA component such that 

      up to a given order  ), as well as mixed-order HOA scenes can be rendered. 

However, in the event where two HOA signals share the same order and degree, an exception is 

raised and the signals are not rendered. 

9.1.2 Normalisation 

HOA signal normalisation is indicated via the normalization HOA type sub-element. All three 

possible normalisations (N3D, SN3D and FuMa) are supported by this renderer. In ADM, HOA 

normalisation is specified for each HOA signal individually, thus it is theoretically possible to define 

HOA scenes whereby the different signals use different normalisations. However this is not 

supported by this renderer: all HOA channels in an audioBlockFormat must share the same 

normalisation. Lastly, note that the FuMa normalisation is supported up to order 3 only. 

9.2 Unsupported sub-elements 

The following three sub-elements of the HOA type are currently not interpreted in the rendering: 

• nfcRefDist, which indicates a reference distance for the loudspeakers. The Near-Field 

Compensation (NFC) effect, which compensates mismatches between the loudspeaker 

reference distance and the distance at which loudspeakers are located in the playback layout, 

is not implemented in the EBU ADM renderer. Implementing this effect in the HOA rendering 

significantly increases the computational complexity of the renderer, while having a 

relatively minor impact on the listener’s perception of the audio content. 

• screenRef, which indicates whether the HOA component is screen-related. The expected use 

of this sub-element is ambiguous in the HOA context; therefore it is not taken into account in 

the rendering. 

• equation, which is meant to be used as a replacement of the order and degree sub-elements. 

The current ADM standard does not provide precise rules regarding the format used to specify 

mathematical formulas. Therefore, this sub-element cannot be supported reliably. 

Note that, similar to the normalization sub-element, all HOA channels in an audioBlockFormat must 

share the same nfcRefDist and screenRef value to be rendered. 
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9.3 Rendering of HOA signals over loudspeakers 

 

Figure 14: HOA rendering flow diagram 

The process of rendering HOA signals over loudspeakers is summarized in Figure 14. First, the ADM 

metadata is parsed to identify the format of the HOA object and check whether the signals can be 

rendered unambiguously. Specifically, as stated above, all HOA channels in an audioBlockFormat 

must share the same normalization, nfcRefDist and screenRef sub-element values. Then, a 

loudspeaker decoding matrix is calculated and applied to the HOA signals. This is expressed by the 

following equation: 

            

Where: 

•      is a matrix of speaker signals, with dimensions           . 

•      is a matrix of HOA signals, with dimensions           . 

•   is a real-valued matrix, with dimensions          , and is referred to as the HOA 

decoding matrix. 

•     ,      and       denote the number of HOA signals, speaker signals and times samples, 

respectively. 

 

This section expresses the decoding matrix calculation in ACN channel ordering, however the 

channel allocation used is as specified in the order and degree parameters in the 

audioBlockFormat. 

The decoding matrix is applied through the use of the Block Processing Channel structure described 

in § 6.4. Specifically, for each incoming HOATypeMetadata object, a single FixedMatrix processing 

block is generated, which applies the decoding matrix between times determined in § 6.5. 

9.3.1 HOA decoding matrix calculation 

The EBU ADM renderer implements the AllRAD HOA decoding technique, as described in 

[Zotter2012]. This method provides robust HOA decoding over irregular loudspeaker layouts such as 

that described in [BS.2051]. The calculation of the decoding matrix is done in 

core.scenebased.design.HOADecoderDesign. 

Conceptually, the AllRAD decoding method is equivalent to: 

1. Decoding the HOA signals to a grid of virtual speakers which are evenly distributed over the 

sphere, and 
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2. Panning the virtual speaker signals over the actual speakers. 

Mathematically, this can be expressed as: 

             

              

Where    denotes the HOA decoding matrix for N3D normalisation,   is the panning gain matrix, 

      is the virtual speaker decoding matrix and   is an energy normalisation factor.   is the 

completed decoding matrix after applying the HOA normalisation vector   to    to apply the 

desired normalisation. 

9.3.1.1 Virtual speaker positions 

In order to facilitate the calculation of the decoding matrix, the angular positions of the virtual 

speakers must be distributed as evenly as possible over the sphere. In addition, as a rule of thumb, 

there should be about twice as many virtual speaker positions than there are HOA signals. 

In the EBU ADM renderer, the virtual speaker positions constitute a 5200-point spherical-T design, 

which makes it well suited for decoding HOA signals up to order 50. 

9.3.1.2 Calculation of the virtual speaker decoding matrix 

In order to calculate the decoding matrix for the virtual speakers, first the matrix of the HOA 

coefficients for the virtual speakers,      , is calculated. This matrix is given by: 

                          
  

      
             

                  

Where          denotes the elevation and azimuth angles for the  -th virtual speaker (using the 

HOA coordinate system and notation as defined in [BS.2076]) and   
  denote the real-valued order-  

and degree-  spherical harmonic function with N3D normalisation. Note that the value of each 

  
        term depends on the order and degree sub-elements for each HOA channel. 

The virtual speaker HOA decoding matrix is then calculated as the transpose of      : 

           
       

  

For the choice of virtual loudspeaker positions and N3D normalisation this is equivalent to taking 

the pseudo-inverse of      . 

9.3.1.3 Calculation of the panning gain matrix 

The HOA decoding matrix is normalised so that, in the case where the HOA scene consists of a 

single point source, the total power of the speaker signals is equal to that of the source signal, on 

average for every possible source location over the sphere. 

Mathematically, the normalisation factor   is calculated as: 

  
      

                  

 

Where      denotes the Frobenius norm. 
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9.3.1.5 HOA normalisation 

The decoding matrix is divided by the vector   in order to convert the signal to the N3D 

normalisation for which    is designed for.   is defined for a given normalization parameter      

as: 
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Annex A: Internal Metadata Structures 

 

A1 Shared Structures 

struct Position { }; 
 
struct PolarPosition : Position { 
  float azimuth, elevation, distance = 1; 
}; 
 
struct CartPositon : Position { 
  float x, y, z; 
}; 
 
struct Screen { }; 
 
struct PolarScreen : Screen { 
  float aspectRatio; 
  PolarPosition centrePosition; 
  float widthAzimuth; 
}; 
 
struct CartesianScreen : Screen { 
  float aspectRatio; 
  CartPositon centrePosition; 
  float widthX; 
}; 
 
struct Frequency { 
  optional<float> lowPass; 
  optional<float> highPass; 
}; 
 
struct ExtraData { 
  Fraction object_start; 
  Fraction object_duration; 
  Screen reference_screen; 
  Frequency channel_frequency; 
}; 

A2 Input Metadata 

struct ChannelLock { 
  optional<float> maxDistance; 
}; 
 
struct ObjectDivergence { 
  float value; 
  optional<float> azimuthRange; 
  optional<float> positionRange; 
}; 
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struct JumpPosition { 
  bool flag; 
  optional<float> interpolationLength; 
}; 
 
struct ExclusionZone { }; 
 
struct CartesianZone : ExclusionZone { 
  float minX; 
  float minY; 
  float minZ; 
  float maxX; 
  float maxY; 
  float maxZ; 
}; 
 
struct PolarZone : ExclusionZone { 
  float minElevation; 
  float maxElevation; 
  float minAzimuth; 
  float maxAzimuth; 
}; 
 
struct ScreenEdgeLock { 
    enum Horizontal { LEFT; RIGHT; }; 
    enum Vertical { BOTTOM; TOP; }; 
 
    optional<Horizontal> horizontal; 
    optional<Vertical> vertical; 
}; 
 
struct ObjectPosition { }; 
 
class PolarObjectPosition : ObjectPosition { 
    float azimuth, elevation, distance; 
    ScreenEdgeLock screenEdgeLock; 
}; 
 
class CartesianObjectPosition | ObjectPosition { 
    float X, Y, Z; 
    ScreenEdgeLock screenEdgeLock; 
}; 
 
struct AudioBlockFormatObjects { 
  ObjectPosition position; 
  bool cartesian; 
  float width, height, depth; 
  float diffuse; 
  optional<ChannelLock> channelLock; 
  optional<ObjectDivergence> objectDivergence; 
  optional<JumpPosition> jumpPosition; 
  bool screenRef; 
  int importance; 
  vector<ExclusionZone> zoneExclusion; 
}; 
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struct ObjectTypeMetadata { 
  AudioBlockFormatObjects block_format; 
  ExtraData extra_data; 
}; 

A3 Reproduction Environment Data 

struct Channel { 
  string name; 
  /// The real position of the loudspeaker 
  PolarPosition polar_position; 
  /// The nominal position of the loudspeaker as in bs.2051. 
  PolarPosition polar_nominal_position; 
  bool is_lfe; 
}; 
 
struct Layout { 
  /// the ITU-format layout name, e.g. "9+10+3" 
  string name; 
  vector<Channel> channels; 
  Screen screen; 
}; 

 


